Partial Reversibility of Dispersion in Heterogeneous Porous Media
非均质多孔介质中色散的部分可逆性
基本信息
- 批准号:506393436
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Solute transport in heterogeneous porous media has been the topic of intensive research in the last four decades. It is well established that solute spreading, measuring the increasing irregularity of solute plumes, differs from solute mixing, quantifying the mass exchange of a solute plume with its surrounding. The former precedes the latter, but only the latter facilitates mixing-controlled reactions. To date there is no theory that is good in predicting both large-scale non-Fickian spreading and solute mixing. Neither give existing theories practical advice on performing large-scale conservative-transport experiments to quantify solute mixing. The proposed project builds on the fact that purely kinematic deformation of water parcels carrying solutes in heterogeneous formations is fully reversible, whereas diffusive mixing is irreversible. The interaction between deformation and small-scale diffusive mixing in solute transport in such formations cause partial reversibility of solute spreading: Upon flow reversal the spatial extent of a solute plume shrinks, but does not revert to the original initial state. The project will analyze second-central moments of solute plumes (of which half the rate of change define dispersion coefficients) in heterogeneous porous media with uniform-in-the-mean flow subject to flow reversal. The applicant presumes that the irreversible fraction of dispersion, after equal times of forward and backward motion, can be taken as a metric of solute mixing. In non-radial push-pull experiments the target quantity is the spread of the breakthrough curve of the returning solute in the injection/extraction cross-section. The analysis is done by particle-tracking random-walk simulations in 3-D virtual domains, by first-order stochastic-perturbative methods for the theoretical analysis of spatial moments, by the development of a new correlated Continuous-Time Random-Walk approach with memory of preceding steps and random exchange with the mean for the analysis of temporal moments, and by experiments in a ca. 2m × 1m quasi 2-D flow domain using refractive-index matching fluids to optimize detection by light-transmission imaging. The experiments will include detecting the breakthrough curve of the returning solute. It is hypothesized that linear stochastic theory predicts ensemble and effective moments well for cases with mild heterogeneity. Increasing the inverse Péclet number, the degree of heterogeneity, and its anisotropy should increase the irreversible fraction of dispersion. Second-central moments are expected to shrink upon flow reversal and increase again before the plume center reaches its original position. The shrinking time and the reversible contribution to ensemble dispersion should scale with the local Péclet number. This project develops new theoretical and experimental approaches to distinguish spreading and mixing in heterogenous porous media, which controls the behavior of reactive compounds.
在过去的四十年中,异质多孔媒体中的溶质运输一直是密集研究的话题。众所周知,可溶性扩散,测量可溶性羽流的不规则性增加,与可溶性混合不同,量化了可溶性羽流的质量交换与周围的周围。前者之前是后者,但后者只有后者有助于混合控制的反应。迄今为止,没有理论在预测大规模的非叉境和固体混合方面都没有良好的理论。都没有提供有关执行大规模保守 - 传输实验以量化固体混合的实用理论建议。拟议的项目建立在以下事实的基础上,即在异质地层中纯净的携带溶剂的水包裹的运动型变形是完全可逆的,而不同的混合是不可逆的。在这种地层中,变形与固体转运中的小尺度分化混合之间的相互作用导致溶质扩散的部分可逆性:在流动逆转时,可溶性羽流的空间范围收缩的空间范围,但并未恢复为原始的初始状态。该项目将分析固体羽毛的第二中心力矩(其中一半的变化率定义了分散系数)在异质的多孔介质中具有均匀的均匀流动流量的均匀流动。在向前和向后运动相等的时间后,不可逆转的分散分数的适用产品可以作为固体混合的度量。在非radial推力实验中,目标数量是注入/提取横截面中回流固体的突破曲线的扩散。分析是通过在3-D虚拟域中的粒子跟踪随机步行模拟,通过一阶随机扰动方法来对空间矩进行理论分析,通过开发新的相关连续时间随机漫游方法,并通过对前面的步骤进行记忆和随机交换,并通过对临时力矩进行分析,以及在CA中进行分析的含义。使用折射率匹配的流体进行2M x 1M准2-D流域,以通过光传输成像来优化检测。实验将包括检测返回固体的突破性曲线。假设线性随机理论预测的集合和有效的矩适合轻度异质性病例。增加逆Péclet数,异质性及其各向异性的程度应增加不可逆的分散分数。预计二次瞬间会在流动逆转后缩小,并在羽流中心达到其原始位置之前再次增加。收缩时间和对集成分散的可逆贡献应随当地的péclet数量而扩展。该项目开发了新的理论和实验方法,以区分异质多孔培养基中的扩散和混合,从而控制反应性化合物的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Olaf A. Cirpka其他文献
Professor Dr.-Ing. Olaf A. Cirpka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Olaf A. Cirpka', 18)}}的其他基金
Retardation and mobilization of arsenic at redox fronts under advective flow conditions - a concerted multidisciplinary approach (AdvectAs)
平流条件下氧化还原前沿砷的延迟和动员 - 协调一致的多学科方法 (AdvectAs)
- 批准号:
320059499 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Developing and Testing a Robust and Reliable Field Method for In-Situ Analysis of Dissolved Gases in Streams
开发和测试一种稳健可靠的现场方法,用于流中溶解气体的原位分析
- 批准号:
319532957 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Value of Groundwater Data in the Assimilation of the Groundwater-Soil-Land-Surface Nexus
地下水数据在地下水-土壤-土地-地表关系同化中的价值
- 批准号:
246189367 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Units
Steady-State Dilution and Mixing-Controlled Reactions in Three-Dimensional Heterogeneous Porous
三维多相多孔材料中的稳态稀释和混合控制反应
- 批准号:
217872108 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Dynamic Behavior of Micobial Growth and Activity in Mixing-Controlled Contaminant Plumes
混合控制污染物羽流中微生物生长和活动的动态行为
- 批准号:
195631779 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Fully Coupled Hydrogeophysical Inversion of Salt-Tracer Experiments
盐示踪实验的全耦合水文地球物理反演
- 批准号:
172142440 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Experimentelle und numerische Untersuchungen zur Durchmischung reaktiver Stoffe im Grundwasser
地下水中活性物质混合的实验和数值研究
- 批准号:
5210212 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Linking Redox-Cycling to Hydrogeology: Sedimentological Controls on the Capacity of Aquifers to Reduce Nitrate and other Dissolved Electron Acceptors
将氧化还原循环与水文地质学联系起来:沉积学控制含水层减少硝酸盐和其他溶解电子受体的能力
- 批准号:
497727419 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Water and Solute Fluxes and their Structural Controls at Margins of Floodplain Aquifers
洪泛区含水层边缘的水和溶质通量及其结构控制
- 批准号:
518484432 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
蒽醌类氧化还原介质增强镁硫电池可逆性的研究
- 批准号:22309127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模框架乘数的可逆性特征及应用研究
- 批准号:12361028
- 批准年份:2023
- 资助金额:27.00 万元
- 项目类别:地区科学基金项目
Hamilton系统中不可逆性、非交换性与随机性相关问题的理论研究
- 批准号:12231010
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
脉冲噪音致可逆性耳聋耳蜗慢性损伤机制研究
- 批准号:82260220
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
钠离子电池Mn基层状正极材料氧氧化还原机理研究与可逆性调控
- 批准号:22209069
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of innovative theories on integrability of dynamical systems and their applications
动力系统可积性创新理论发展及其应用
- 批准号:
22H01138 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel activated carbon for effective perfluoroalkyl substance (PFASs) removal by minimizing problematic desorption.
新型活性炭可通过最大程度地减少脱附问题来有效去除全氟烷基物质 (PFAS)。
- 批准号:
20K22425 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
The establishment of a technology of binderless flexible tape casting using stimulation responsive slurry
刺激响应浆料无粘结剂柔性流延成型技术的建立
- 批准号:
20K05200 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on a novel modulation scheme for optical fiber communication based on nonlinear wave theory
基于非线性波理论的光纤通信新型调制方案研究
- 批准号:
19H02140 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of functional supramolecular materials with reversible or movable supramolecules as crosslinking points
以可逆或可移动超分子作为交联点创建功能性超分子材料
- 批准号:
18H02035 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)