Interfaces in All-Perovskite Tandem Solar Cells

全钙钛矿串联太阳能电池中的界面

基本信息

项目摘要

All-perovskite tandem solar cells promise high efficiencies and low costs. Hybrid perovskites stand out because it is possible to produce films of only a few hundred nanometers and low defect density with relatively simple processes. The tandem geometry enables efficiencies beyond the radiative limit of single junction solar cells. Despite rapid progress, perovskite-perovskite tandem solar cells still face several challenges: (i) The stability of the absorbers. The high bromide content necessary for high bandgaps of top cell absorber favors phase, while Sn2+ in the low-bandgap absorber might oxidize to Sn4+. (ii) Interface recombination at the interface between absorber and the electron transport layers (ETL) or at one of the various interconnection layers, e.g. caused by lateral heterogeneity and leakage. Furthermore, the loss of volatile components, ion migration, or chemical reaction might lead to recombination-active trap states or extraction barriers. (iii) Optical losses, such as parasitic absorption losses in charge transport and interconnection layers, reflection losses and incomplete absorption, which limit the current especially of the bottom low-bandgap solar cell. The key to solving these challenges lies in the many interfaces in a tandem solar cell. Strategies include additives, interface passivation, new contact materials and thinning of charge transport and interconnection layers as well as structuring for increased absorption. For a target-oriented optimization of tandem cells, a thorough understanding of the associated interfaces is of crucial importance for the further technology development. Therefore, the aim of this project is to investigate the physical and chemical effects that lead to performance losses at the interfaces of perovskite-perovskite tandem solar cells. To this end, we will manufacture perovskite-perovskite tandem device, and will develop advanced spatially resolved characterization tools complemented by theoretical modeling all the way from nanoscale interface effects to the device level.
全钙钛矿串联太阳能电池承诺高效率和低成本。混合钙钛矿脱颖而出,因为它可以用相对简单的工艺生产仅几百纳米和低缺陷密度的薄膜。串联的几何形状使得效率能够超过单结太阳能电池的辐射极限。尽管进展迅速,但钙钛矿-钙钛矿叠层太阳能电池仍然面临着几个挑战:(i)吸收剂的稳定性。顶电池吸收体的高带隙所需的高溴化物含量有利于相,而低带隙吸收体中的Sn 2+可能氧化为Sn 4+。(ii)在吸收体和电子传输层(ETL)之间的界面处或在各种互连层之一处的界面复合,例如由横向异质性和泄漏引起。此外,挥发性组分的损失、离子迁移或化学反应可能导致复合活性陷阱态或提取势垒。(iii)光学损耗,例如电荷传输和互连层中的寄生吸收损耗、反射损耗和不完全吸收,其限制了特别是底部低带隙太阳能电池的电流。解决这些挑战的关键在于串联太阳能电池中的许多接口。策略包括添加剂,界面钝化,新的接触材料和减薄的电荷传输和互连层,以及结构化增加吸收。为了有针对性地优化叠层电池,对相关接口的深入了解对于进一步的技术开发至关重要。因此,本项目的目的是研究导致钙钛矿-钙钛矿叠层太阳能电池界面性能损失的物理和化学效应。为此,我们将制造钙钛矿-钙钛矿串联器件,并将开发先进的空间分辨表征工具,辅之以从纳米级界面效应到器件级的理论建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Glunz其他文献

Professor Dr. Stefan Glunz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stefan Glunz', 18)}}的其他基金

Advanced optics for perovskite-silicon tandem solar cells
用于钙钛矿-硅串联太阳能电池的先进光学器件
  • 批准号:
    322520834
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Interface Engineering for Terawatt Scale Deployment of Perovskite-on-Silicon Tandem Solar Cells
硅基钙钛矿串联太阳能电池太瓦级部署的接口工程
  • 批准号:
    EP/X037169/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Thin film - perovskite tandem structures
薄膜-钙钛矿串联结构
  • 批准号:
    2880817
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
EAGER: New interconnect for the perovskite-silicon tandem solar cell: optically transparent and electrically conductive multilayer film
EAGER:钙钛矿-硅串联太阳能电池的新型互连件:光学透明且导电的多层薄膜
  • 批准号:
    2314036
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
All-perovskite tandem solar cells for efficient green hydrogen production
用于高效绿色制氢的全钙钛矿串联太阳能电池
  • 批准号:
    DE230101712
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Improving the Efficiency and Stability of Tin-Lead Perovskite Solar Cells for Applications in All-Perovskite Tandem Solar Cells
提高锡铅钙钛矿太阳能电池的效率和稳定性,用于全钙钛矿串联太阳能电池
  • 批准号:
    569541-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
NEXt generation of sUstainable perovskite-Silicon tandem cells
下一代可持续钙钛矿硅串联电池
  • 批准号:
    10054976
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
NEXt generation of sUstainable perovskite-Silicon tandem cells.
下一代可持续钙钛矿-硅串联电池。
  • 批准号:
    10055184
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Bifacial all perovskite tandem solar cells for a sustainable energy future
双面全钙钛矿串联太阳能电池,实现可持续能源的未来
  • 批准号:
    2050357
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase II: High-power, lightweight, and flexible tandem perovskite solar panels
SBIR第二期:高功率、轻量化、柔性串联钙钛矿太阳能电池板
  • 批准号:
    2112377
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
I-Corps: Solution-Processed, High-Quality Indium Tin Oxide (ITO) Films for Perovskite-Based Tandem Solar Cells
I-Corps:用于钙钛矿串联太阳能电池的溶液加工高品质氧化铟锡 (ITO) 薄膜
  • 批准号:
    2041928
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了