STICKS - Stochastic Mikado Flows for Fluid Mechanics
STICKS - 流体力学的随机 Mikado 流
基本信息
- 批准号:507913792
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fluid dynamics and turbulence play an extraordinarily important role in science and technology, with applications ranging from engineering to climatology and astrophysics. The partial differential equations (PDEs) that model the flow of fluids give rise to several paradoxical, weak solutions. For example, a weak solution could start at a complete rest, then suddenly start to move in a most irregular fashion, only to fall completely quiet again in the end. This kind of irregular behaviour clearly violates the fundamental conservation of energy and is conjectured to be important in the formation of turbulence, where it is known as anomalous dissipation. It has been the subject of intense research in the last two decades, leading recently to a mathematically rigorous proof of the so-called Onsager conjecture that gives a precise description of how smooth a flow has to be in order to be energy-preserving. The proof of this conjecture used a much older theory called convex integration, pioneered by Nobel and Abel laureate John F. Nash and Abel laureate Mikhael L. Gromov.More recently, these techniques have been applied by several groups to stochastic PDEs which model flows subjected to numerical, empirical and physical uncertainties, and which have recently become very popular in the wake of Martin Hairer's Fields Medal, where convex integration led to similarly spectacular results as in the deterministic case.In this project, we will investigate several stochastic PDE models from fluid dynamics and plasma physics and study their anomalous dissipation properties via the theory of convex integration. More precisely, we will study transport equations, Euler equations and magnetohydrodynamic (MHD) equations, subject to random perturbations.The project will be spent in Prof. Vlad Vicol's group at Courant Institute of Mathematical Sciences, New York. We will develop a mathematical theory of stochastic Mikado flows as key building blocks in convex integration and apply it to the above-mentioned systems, aiming to get nonuniqueness results for solutions to these equations.
流体动力学和湍流在科学技术中扮演着极其重要的角色,应用范围从工程学到气候学和天体物理学。模拟流体流动的偏微分方程组(PDE)产生了几个自相矛盾的弱解。例如,弱解决方案可能在完全休息时开始,然后突然开始以最不规律的方式移动,最后又完全安静下来。这种不规则的行为显然违反了能量的基本守恒定律,并被认为是湍流形成的重要原因,在湍流中,它被称为反常耗散。在过去的20年里,它一直是密集研究的主题,最近导致了对所谓的Onsager猜想的严格数学证明,该猜想准确地描述了一种流动必须有多平滑才能保持能量。这个猜想的证明使用了一个更古老的理论,称为凸积分,由诺贝尔和阿贝尔奖获得者约翰·F·纳什和阿贝尔奖获得者米哈尔·L·格罗莫夫首创。最近,这些技术被几个小组应用于随机偏微分方程,其流动受到数值、经验和物理的不确定性的影响,最近在马丁·海尔的菲尔兹奖章之后变得非常流行,其中凸积分导致了与确定性情形类似的壮观结果。在这个项目中,我们将从流体力学和等离子体物理中研究几个随机PDE模型,并通过凸积分理论研究它们的反常耗散性质。更确切地说,我们将研究随机扰动下的输运方程、欧拉方程和磁流体动力学(MHD)方程。该项目将在纽约库兰特数学科学研究所的Vlad Vicol教授的小组中完成。我们将发展随机Mikado流的数学理论作为凸积分中的关键构件,并将其应用于上述系统,目的是得到这些方程解的非唯一性结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Andre Schenke其他文献
Dr. Andre Schenke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant