Investigating turbulent particulate flows with the aid of invariant solutions to the Navier-Stokes equations

借助纳维-斯托克斯方程的不变解研究湍流颗粒流

基本信息

项目摘要

Many natural and man-made fluidic systems feature a disperse particulate phase, and the majority of these flows is turbulent. Examples are hydro-meteors (rain, snow or hail) in the earth's atmosphere, sediment particles in surface water bodies, or the solid matter transported through an industrial pipeline system. Despite much past research effort our understanding of turbulent particulate flows is still rather limited at this point due to two factors. First, obtaining high-fidelity data in such multi-phase flow systems still poses a formidable challenge to modern experimental and numerical techniques. Second, high-quality data-sets feature an enormous number of degrees of freedom, and they are therefore extremely tedious to analyze. The situation is even worse in the case of particles with a size larger than the smallest relevant flow scales, since they are fully coupled to the fluid motion and no simplified description for their dynamics is available. Here we propose to reduce the complexity of the systems by replacing fully developed turbulence in the carrier phase with one of the relevant invariant solutions (i.e. travelling waves or periodic orbits) pertaining to the specific flow configuration. Our strategy follows the spirit of the dynamical systems approach to turbulence, which considers that invariant solutions contain most of the essential information and thereby form the skeleton of turbulence. Analyzing the dynamics of solid particles in these simpler flows is then much less resource-intensive (thereby allowing for extensive parameter sweeps), while the results can still be directly related to fully-developed turbulence. Our working hypothesis is that carrying out this program will allow us to shed new light on long-standing open questions such as the influence of turbulence upon the settling velocity and the clustering of finite-size particles.
许多天然和人造的流体系统以分散的颗粒相为特征,并且这些流动的大部分是湍流。例如,地球大气中的水流星(雨、雪或冰雹),地表水体中的沉积物颗粒,或通过工业管道系统运输的固体物质。尽管过去做了大量的研究工作,但由于两个因素,目前我们对湍流颗粒流的了解仍然相当有限。首先,在这样的多相流系统中获得高保真数据仍然是对现代实验和数值技术的巨大挑战。其次,高质量的数据集具有巨大的自由度,因此分析它们非常繁琐。对于尺寸大于最小相关流动尺度的颗粒,情况甚至更糟,因为它们与流体运动完全耦合,并且没有对其动力学的简化描述。在这里,我们建议通过用与特定流动构型相关的不变解(即行波或周期轨道)之一来替换载流相中的完全发展的湍流来降低系统的复杂性。我们的策略遵循了动力系统方法研究湍流的精神,该方法认为不变解包含了大多数基本信息,从而形成了湍流的骨架。在这些更简单的流动中分析固体颗粒的动力学则不那么耗费资源(从而允许广泛的参数扫描),而结果仍然可以与充分发展的湍流直接相关。我们的工作假设是,执行这一计划将使我们能够为长期悬而未决的问题提供新的线索,例如湍流对沉降速度的影响和有限大小颗粒的聚集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Markus Uhlmann其他文献

Professor Dr. Markus Uhlmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Markus Uhlmann', 18)}}的其他基金

Gravity-induced settling of many non-spherical particles at intermediate Galileo numbers: a DNS study
许多非球形粒子在中间伽利略数下的重力诱导沉降:一项 DNA 研究
  • 批准号:
    398061626
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Secondary flow and longitudinal sediment patterns in open channel flow over a bed of mobile particles
移动颗粒床明渠流中的二次流和纵向沉积模式
  • 批准号:
    401776764
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct numerical simulation of buoyant-convectively driven gas transfer across gas-liquid interfaces
浮对流驱动气体跨气液界面传递的直接数值模拟
  • 批准号:
    276322396
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-resolution numerical analysis of turbulent secondary motion in open duct flow
开放管道流中湍流二次运动的高分辨率数值分析
  • 批准号:
    223117586
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct numerical simulation of pattern formation in subaqueous sediment
水下沉积物图案形成的直接数值模拟
  • 批准号:
    218077110
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Finite-size particles in homogeneous turbulence: a numerical study
均匀湍流中的有限尺寸颗粒:数值研究
  • 批准号:
    183403163
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Shock wave interaction with spherical particles: a particle-resolved numerical study of collective effects
冲击波与球形粒子的相互作用:集体效应的粒子解析数值研究
  • 批准号:
    420325084
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Finite-size particles interacting with non-homogeneous turbulence
有限尺寸粒子与非均匀湍流相互作用
  • 批准号:
    529941008
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Numerical study of internal waves, turbulent mixing, and behavior of particulate matter around artificial mound reef
人工丘礁周围内波、湍流混合和颗粒物行为的数值研究
  • 批准号:
    17K18431
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New understanding of turbulent flames with soot and particulate fuels
对烟灰和颗粒燃料湍流火焰的新认识
  • 批准号:
    DP130100198
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Mathematical modelling of particulate motion in turbulent flows
湍流中颗粒运动的数学模型
  • 批准号:
    203162-2006
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of particulate motion in turbulent flows
湍流中颗粒运动的数学模型
  • 批准号:
    203162-2006
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of particulate motion in turbulent flows
湍流中颗粒运动的数学模型
  • 批准号:
    203162-2006
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Methods for Eulerian probability-density-transport equations in turbulent particulate dispersion
湍流颗粒分散中欧拉概率-密度-输运方程的自适应方法
  • 批准号:
    0908491
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical modelling of particulate motion in turbulent flows
湍流中颗粒运动的数学模型
  • 批准号:
    203162-2006
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of particulate motion in turbulent flows
湍流中颗粒运动的数学模型
  • 批准号:
    203162-2006
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of particulate motion in turbulent flows
湍流中颗粒运动的数学模型
  • 批准号:
    203162-2006
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
ENGINEERING RESEARCH EQUIPMENT: A One-Component Laser Doppler Velocimeter System for Turbulent Particulate Flows in Hydraulics
工程研究设备:用于液压领域湍流颗粒流的单组件激光多普勒测速仪系统
  • 批准号:
    9212048
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了