Adaptive Methods for Eulerian probability-density-transport equations in turbulent particulate dispersion
湍流颗粒分散中欧拉概率-密度-输运方程的自适应方法
基本信息
- 批准号:0908491
- 负责人:
- 金额:$ 8.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is to develop an approximation methodology for Eulerian probability-density-transport equations involving a large state-space dimension. These equations include Liouville and Fokker-Planck equations which arise in many applications involving statistical descriptions: from uncertainty quantification and inverse problems to turbulent mixing, chemical reactions and dispersion of particles. The focus is on those problems where the large number of independent state-space variables makes classical approximation methods unfeasible because of their large computation cost. The new technique is a Rayleigh-Ritz global approximation method using analytical quadratures. The global nature of the basis functions transforms an expensive computational problem in state-space into a finite number of equations with the dimensionality of the deterministic equations governing a single realization of the problem of interest. The methods developed in the project will indirectly help improve prediction of the outcome in a number of physical problems where boundary conditions or initial conditions are only available statistically. Such problems arise in particulate flows, aerosols, sprays and droplet dynamics encountered in the dispersion of contaminants, where only partial statistical knowledge of the conditions is available. This project has direct bearing on high-performance computing and modeling of physical systems involving flows carrying solid or liquid particles.
本计画旨在发展一种适用于大状态空间维之欧拉机率-密度-输运方程式的近似方法。这些方程包括Liouville和Fokker-Planck方程,这些方程出现在许多涉及统计描述的应用中:从不确定性量化和逆问题到湍流混合,化学反应和粒子分散。重点是在这些问题中,大量的独立的状态空间变量使得经典的近似方法不可行,因为它们的大计算成本。 新的技术是一个瑞利-里兹全球近似方法,使用解析求积。基函数的全局性质将状态空间中的昂贵计算问题转换为有限数量的方程,其中确定性方程的维数控制感兴趣的问题的单个实现。该项目中开发的方法将间接帮助改进一些物理问题的结果预测,这些问题的边界条件或初始条件仅在统计上可用。这些问题出现在颗粒流,气溶胶,喷雾和液滴动力学中遇到的污染物的分散,只有部分的统计知识的条件。该项目直接关系到涉及携带固体或液体颗粒的流动的物理系统的高性能计算和建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Pantano-Rubino其他文献
Carlos Pantano-Rubino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Pantano-Rubino', 18)}}的其他基金
CyberTraining: Pilot: Fostering Computational Excellence (FOCEX): Addressing the Disconnect between Advanced CyberInfrastructure and Educational Preparedness
网络培训:试点:促进卓越计算 (FOCEX):解决先进网络基础设施与教育准备之间的脱节
- 批准号:
2320943 - 财政年份:2023
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
A Novel Probabilistic-Based Approach to the Simulation of Disperse Two-Phase Flows with Application to Atmospheric Science
一种基于概率的新型分散两相流模拟方法及其在大气科学中的应用
- 批准号:
1318161 - 财政年份:2013
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant
A novel application of flame hole dynamics to consistent turbulent nonpremixed combustion modeling
火焰孔动力学在一致湍流非预混燃烧建模中的新颖应用
- 批准号:
1236164 - 财政年份:2012
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 8.07万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 8.07万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant