Configurations of spherical twists and derived Picard groups of Brauer graph algebras

球面扭曲的配置和布劳尔图代数的派生皮卡德群

基本信息

项目摘要

The interplay between symplectic geometry and representation theory has been very fruitful in recent years. Among others, it led to a significant progress in understanding the structure of derived categories, their equivalence classification and groups of autoequivalences for gentle algebras - a class of algebras, providing an important manageable test class in representation theory. This project aims at further exploiting and extending this connection in the study of Brauer graph algebras and their graded analogues. Brauer graph algebras arise naturally in modular representation theory. Roughly speaking, a Brauer graph algebra B_Γ can be assigned to any graph Γ (minimally) embedded into a surface Σ_Γ and a natural number assigned to each vertex of the graph, called multiplicity. The connection between Brauer graph algebras and symplectic geometry was first investigated in my joint work with S. Opper. There we introduced a class of A-infinity categories, containing Brauer graph algebras. These A-infinity categories are quasi-equivalent to trivial extensions of partially wrapped Fukaya categories of surfaces with boundary equipped with a line field and a finite number of stops on the boundary. Studying this class of A-infinity categories led to a complete derived equivalence classification of ordinary Brauer graph algebras.Derived Picard groups or groups of autoequivalences of bounded derived categories of Brauer graph algebras and their graded analogues are of particular interest, since projective modules over Brauer graph algebras with trivial multiplicities provide configurations of spherical objects. Spherical objects in enhanced triangulated categories produce autoequivalences of these categories called spherical twists. They were introduced by Seidel and Thomas with motivation stemming from the homological mirror symmetry conjecture as counterparts of generalized Dehn twists associated with Lagrangian spheres. The aim of this project is to study groups of autoequivalences of the bounded derived category of Brauer graph algebras and their graded analogues. These groups are very hard to study in general and this was done in a very few cases. As part of the project I am planning to 1) study the subgroup of the group of autoequivalences generated by spherical twists along projective modules of a graded Brauer graph algebra B_Γ and show that this subgroup is isomorphic to the braid twist group of the surface Σ_Γ; 2) study intrinsic formality of graded Brauer graph algebras in order to transfer results obtained in (1) to any enhanced triangulated category with a suitable configuration of spherical objects (conjecturally, such categories appear as certain Fukaya categories and in the study of cluster categories); 3) obtain a complete description of groups of autoequivalences of the bounded derived category of Brauer graph algebras using certain subgroups of the mapping class group of Σ_Γ, shift and outer automorphisms of B_Γ.
近年来,辛几何和表示论之间的相互作用已经非常富有成果。除其他外,它导致了一个重大的进展,在理解结构的派生类别,其等价分类和集团的自等价温柔代数-一类代数,提供了一个重要的可管理的测试类表示论。该项目旨在进一步利用和扩展这种联系在布劳尔图代数及其分次类似物的研究。Brauer图代数在模表示理论中自然出现。粗略地说,一个Brauer图代数B_Γ可以被赋给任何嵌入到一个曲面B_Γ中的图Γ,并且给图的每个顶点赋一个自然数,称为重数。Brauer图代数和辛几何之间的联系首先是在我与S。奥珀在那里,我们引入了一类A-无穷范畴,包含Brauer图代数。这些A-无穷范畴是拟等价于曲面的部分包裹福谷范畴的平凡扩张,其边界上具有一个线域和有限个停点。对这类A-无穷范畴的研究导致了普通Brauer图代数的一个完整的导出等价分类。Brauer图代数的有界导出范畴的导出Picard群或自等价群及其分次类似物特别令人感兴趣,因为Brauer图代数上具有平凡重数的投射模提供了球形对象的构型。增强三角形化类别中的球形对象产生这些类别的自等价,称为球形扭曲。它们是由赛德尔和托马斯引入的,其动机来自同调镜像对称猜想,作为与拉格朗日球相关的广义德恩扭曲的对应物。 本项目的目的是研究Brauer图代数的有界导出范畴及其分次类似物的自等价群。总的来说,这些群体很难研究,只有极少数情况下才这样做。作为项目的一部分,我计划1)研究分次Brauer图代数B_r的球面扭沿着投射模生成的自等价群的子群,并证明这个子群与曲面B_r的辫子扭群同构; 2)研究分次Brauer图代数的内禀形式,推广(1)中的结果到任何增强的三角形类别与适当配置的球形物体(从理论上讲,这类范畴作为某些福谷范畴出现,并在聚类范畴的研究中出现);第三章利用映射类的某些子群得到Brauer图代数的有界导出范畴的自等价群的完整描述B_r的群,B_r的移位和外自同构.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Alexandra Zvonareva, Ph.D.其他文献

Dr. Alexandra Zvonareva, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Interplay between orientation and lift forces on non-spherical particles in complex fluids
复杂流体中非球形颗粒的方向力和升力之间的相互作用
  • 批准号:
    2341154
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Advancing Laser Powder Bed Fusion with Non-Spherical Powder
职业:推进激光粉末床与非球形粉末的融合
  • 批准号:
    2339857
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spherical Magnetic Joint based Antigravitational Locomotion of Multi-Legged Robot
基于球形磁关节的多足机器人反重力运动
  • 批准号:
    23K22720
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
fabrication of supersaturated solid solution thermoelectric materials utilizing novel spherical composite powder preparation technology and laser powder bed fusion
利用新型球形复合粉末制备技术和激光粉末床熔融制备过饱和固溶体热电材料
  • 批准号:
    23K13572
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-linear modelling of performance limiting MHD and disruptions in spherical tokamaks
球形托卡马克性能限制 MHD 和破坏的非线​​性建模
  • 批准号:
    2910483
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Superstabilization of perovskite quantum dots: a proposal of in-situ synthesis during spherical polymer particle preparation
钙钛矿量子点的超稳定性:球形聚合物颗粒制备过程中原位合成的提议
  • 批准号:
    23K04411
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the formation mechanism of spherical mitochondria during spermatogenesis.
精子发生过程中球形线粒体形成机制的研究。
  • 批准号:
    23K05831
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
  • 批准号:
    23K03037
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hierarchical formation mechanism of icosahedral spherical virus particles and its pH-dependent control
二十面体球形病毒颗粒的分级形成机制及其pH依赖性控制
  • 批准号:
    23K17981
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了