Plausible Reasoning and Revision in AI Along Two Dimensions: Syntax Splitting and Kinematics Principles
人工智能中两个维度的合理推理和修正:语法分割和运动学原理
基本信息
- 批准号:512363537
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main goal of this project is to enrich and extend the frameworks of plausible reasoning and belief revision in symbolic Artificial Intelligence by integrating on a deep methodological base two techniques from probabilistic reasoning which are fundamental to allow for local reasoning on small subsignatures via conditionals: syntax splitting and kinematics. Syntax splitting divides the semantic space of models according to subsets of the signature; kinematics allows for further dividing it according to (exclusive) cases. In this way, syntax splitting and kinematics principles structure reasoning and revision tasks along two dimensions, and support their more efficient solution on local subspaces. Local reasoning and local revision (on semantic subspaces resp. on subsets of the belief bases) are key concepts of this project. A major challenge is to (re)construct a global solution of the inductive reasoning resp. revision task on the whole semantic space from the local solutions. The results of the project will have far-reaching both practical and theoretical impacts, supported by a repository of benchmark problems addressing the two splitting dimensions of inductive reasoning and iterated revision and evaluated with a workbench and demonstrator system, by providing more efficient algorithms and implementations, and by dealing with the processing of sets of conditionals for inductive reasoning and belief revision. Novel techniques far beyond the current state of the art and also novel axioms that may govern advanced reasoning and revision approaches will be developed. This will be possible by setting up a coherent and unified framework for reasoning and revision which is based thoroughly on epistemic states and conditionals. For representing epistemic states, we rely on two of the most broadly used semantic frameworks for nonmonotonic inference and belief revision, namely total preorders (TPO) and ordinal conditional functions (OCF). We aim at taking maximal benefit from the interrelationships between both semantics while exploiting the stronger structure of OCFs for TPO methods. Moreover, we make use of c-representations and c-revisions for OCFs which have been inspired by probabilistic reasoning/revision, together with strategies which govern the impacts of conditionals in reasoning/revision tasks in a coherent and principled way. Their employment for merging local solutions into global solutions offers a completely novel perspective on (conditional) merging. The axiomatic description of suitable strategies for c-representations/c-revisions is not only of practical relevance to define suitable operators. This also conveys deep methodological insights into reasoning with and revision by conditionals due to governing the interactions of sets of conditional beliefs under inductive reasoning/belief revision. In this way, basic ideas and main results of our approach will be transferrable to other approaches to inductive reasoning and revision.
该项目的主要目标是丰富和扩展符号人工智能中可信推理和信念修正的框架,方法是在深度方法论基础上集成概率推理的两种技术,这两种技术是通过条件对小子签名进行局部推理的基础:语法分裂和运动学。语法分割是根据签名的子集划分模型的语义空间;运动学允许进一步划分它根据(独家)的情况。通过这种方式,语法分裂和运动学原理沿着两个维度构建推理和修正任务,并支持它们在局部子空间上更有效地求解。语义子空间的局部推理与局部修正。在信念基础的子集上)是这个项目的关键概念。一个主要的挑战是(重新)构建归纳推理问题的全局解。修正任务从整体语义空间的局部解出发。该项目的结果将具有深远的实践和理论影响,通过提供更有效的算法和实现,以及处理归纳推理和信念修订的条件集的处理,通过解决归纳推理和迭代修订的两个分裂维度的基准问题存储库,并通过工作台和演示系统进行评估,支持该项目的结果。将开发出远远超出当前技术水平的新技术,以及可能管理高级推理和修正方法的新公理。这将通过建立一个完全基于认知状态和条件的连贯和统一的推理和修订框架来实现。为了表示认知状态,我们依赖于两种最广泛使用的非单调推理和信念修正语义框架,即总预数(TPO)和有序条件函数(OCF)。我们的目标是从两个语义之间的相互关系中获得最大的利益,同时利用ocf对TPO方法的更强结构。此外,我们还利用c-表示和c-修正的ocf,这些ocf受到概率推理/修正的启发,以及以连贯和有原则的方式管理推理/修正任务中条件影响的策略。它们用于将本地解决方案合并到全局解决方案中,为(有条件的)合并提供了全新的视角。c-表示/c-修正的合适策略的公理化描述不仅与定义合适的操作符具有实际意义。由于在归纳推理/信念修正下控制条件信念集的相互作用,这也传达了对条件推理和条件修正的深刻方法论见解。这样,我们的方法的基本思想和主要结果将被转移到其他方法的归纳推理和修订。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Beierle其他文献
Professor Dr. Christoph Beierle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph Beierle', 18)}}的其他基金
Intentional Forgetting and Changes in Work Processes: A Process-Conditional Approach in the Administrative and IT Context
工作流程中的故意遗忘和改变:行政和 IT 环境中的流程条件方法
- 批准号:
427257555 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Intentional forgetting through cognitive-computational methods of priorization, knowledge compression and contraction
通过优先级排序、知识压缩和缩减的认知计算方法进行有意遗忘
- 批准号:
318378366 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Logikbasierte probabilistiche Wissensrepräsentation für relationales Lernen, Modellieren und Inferieren
用于关系学习、建模和推理的基于逻辑的概率知识表示
- 批准号:
46424101 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Dynamics of knowledge and knowledge discovery based on conditional structures
基于条件结构的知识动态与知识发现
- 批准号:
5271586 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Exploring the use of mechanistic reasoning in undergraduate physiology education
博士后奖学金:STEMEdIPRF:探索机械推理在本科生理学教育中的应用
- 批准号:
2327451 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
- 批准号:
2402833 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Programming Abstractions and Formal Reasoning for IoT Application Development
职业:物联网应用程序开发的编程抽象和形式推理
- 批准号:
2340479 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341512 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341513 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: A Contextual Integrity Approach for Privacy Reasoning Regarding Performance Tracking Technologies in US College Athletics
CRII:SaTC:美国大学体育运动成绩跟踪技术隐私推理的上下文完整性方法
- 批准号:
2348294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical and Probabilistic Reasoning を重視した授業と教師用教材の開発研究
研究和开发以统计和概率推理为重点的课程和教材
- 批准号:
23K02801 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




