Functionally Determinated Additive Manufacturing

功能确定的增材制造

基本信息

项目摘要

Additive Manufacturing (AM) offers the opportunity to leave many limitations of conventional manufacturing processes behind. However, AM processes also bring new constraints and challenges for design, process preparation and the production of functional component geometries. Components are created as growing solid bodies by successively adding material in a given build direction. The layer-by-layer manufacturing strategy imprints anisotropic behavior on the component and severely limits the printability of complex geometries, since unfavorable force states and poorly printable active surfaces generally cannot be avoided by the design. The superior research hypothesis for the described project is: Through a cross-disciplinary function-oriented, multi-directional and layerless product development process, component geometries optimized for additive manufacturing can be designed and manufactured in a load-oriented manner and with functionally optimized active surfaces. The overall objective of the project is to harness the full potential of AM by establishing a continuous product development process (PDP) consisting of design process, process preparation and manufacturing and by further developing the Fused Layer Modelling (FLM) process into a multi-directional and layerless manufacturing process. Subgoals 1. The aim of the design is the functionally determined component design for additive manufacturing. The function of a component is represented by its active surfaces and its guiding-support structure. The degrees of freedom of AM allow the design of a component to be consistently aligned with the required active surfaces and structural features. The prerequisite is a function-oriented, model-based development process that places the active surfaces and structural features in the foreground and considers the AM-specific manufacturing restrictions. 2. The goal of process preparation is an algorithm that calculates the necessary extrusion trajectories for force-path-optimized manufacturing from the initially process-independent component description of the design, considering process-specific boundary conditions and the manipulator used. 3. The goal of manufacturing is a prototypical 6D printing and handling process that applies extrusion strands in a spatially and load-optimized manner and can flexibly grip, hold and guide the resulting component. This manufacturing process is realized by a demonstrator consisting of a fixed print head and a robot. The fixed print head ensures that extrusion strands are always applied in a flat position (horizontal to the print surface). The planning of the robot trajectory allows continuous manipulation of the component by the robot under the print head with maximized freedom.
增材制造(AM)提供了摆脱传统制造工艺的许多限制的机会。然而,增材制造工艺也为设计、工艺准备和功能部件几何形状的生产带来了新的约束和挑战。通过沿给定的构建方向连续添加材料,将零部件创建为不断生长的实体。逐层制造策略在组件上压印各向异性行为,并严重限制复杂几何形状的可印刷性,因为不利的力状态和可印刷性差的活性表面通常无法通过设计来避免。所描述的项目的上级研究假设是:通过跨学科的功能导向、多方向和无层的产品开发过程,可以以负载导向的方式设计和制造针对增材制造优化的部件几何形状,并具有功能优化的活动表面。该项目的总体目标是通过建立一个由设计过程、工艺准备和制造组成的连续产品开发过程(PDP),并通过进一步将熔融层建模(FLM)过程发展为多方向和无层制造过程,来充分利用AM的潜力。次级目标1.设计的目的是为增材制造提供功能确定的组件设计。构件的功能由其活动表面和导向支撑结构来表示。AM的自由度允许组件的设计与所需的活动表面和结构特征一致。先决条件是一个面向功能的、基于模型的开发过程,该过程将活动表面和结构特征置于前台,并考虑AM特定的制造限制。2.工艺准备的目标是一种算法,该算法从设计的初始工艺无关部件描述,考虑特定于工艺的边界条件和所使用的机械手,计算力路径优化制造所需的挤出轨迹。3.制造的目标是一个典型的6D打印和处理过程,以空间和负载优化的方式应用挤出股线,并可以灵活地夹持,保持和引导所产生的组件。这个制造过程是通过由固定打印头和机器人组成的演示器来实现的。固定式打印头确保挤出线始终以平面位置(与打印表面水平)应用。机器人轨迹的规划允许机器人在打印头下方以最大的自由度连续操纵部件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Burkhard Corves其他文献

Professor Dr.-Ing. Burkhard Corves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Burkhard Corves', 18)}}的其他基金

Formalized design methods and component-related fundamentals for the development of fold based robots
用于开发折叠机器人的形式化设计方法和组件相关基础知识
  • 批准号:
    439938364
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Designing Deployable Folded Plate Structures
设计可展开的折叠板结构
  • 批准号:
    289387994
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental Studies on Flexure Hinges with use in High-Precision Parallel Kinematic Micromanipulators
高精度并联运动微操作器中使用的柔性铰链的基础研究
  • 批准号:
    195107040
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Realisierung hochdynamischer rastbehafteter Bewegungen für eine parallelkinematische Nähanlage (PARASEW 1000)
实现并联运动缝纫系统的高动态锁定运动 (PARASEW 1000)
  • 批准号:
    5418982
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Realisierung hochdynamischer rastbehafteter Bewegungen für eine parallelkinematische Nähanlage (PARASEW 1000)
实现并联运动缝纫系统的高动态锁定运动 (PARASEW 1000)
  • 批准号:
    5418980
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
SonicFibre – Experimental and numerical multiscale analysis of temporary friction reduction during textile production by means of plate vibration excitation
SonicFibre â 通过板振动激励在纺织品生产过程中暂时减少摩擦的实验和数值多尺度分析
  • 批准号:
    516937265
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hybrid Process Prognosis for Metal Ultrasonic Welding - Pro²MUSS
金属超声波焊接的混合工艺预测 - Pro²MUSS
  • 批准号:
    520475171
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Redundancy for resilience in smart factories of the future through hybrid mobile robotic systems
通过混合移动机器人系统实现未来智能工厂弹性的冗余
  • 批准号:
    520470591
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kinematic weld-pool control for additive manufacturing with high-performance materials by gas tungsten arc welding
通过钨极气体保护焊使用高性能材料进行增材制造的运动熔池控制
  • 批准号:
    442454814
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了