Car as Diagnostic Space (CarDS)
汽车作为诊断空间 (CarDS)
基本信息
- 批准号:513991330
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Early detection of symptoms is critical to detect diseases at an early stage. Therefore, continuous health monitoring integrated into private spaces such as the vehicle has the potential to detect diseases earlier. This enables a better treatment, decreases the mortality rate, and reduces costs in the healthcare system. On average, a German spends 43 min per day in a vehicle. Hence, we aim at building an in-vehicle sensor system that integrates a medical check-up into our daily mobility. We want to integrate a health monitoring system with multiple sensors to measure the electrocardiogram (ECG), Photoplethysmogram (PPG), remote PPG (rPPG), and phonocardiogram (PCG). Redundant sensor data increases the reliability of the data analysis. We will integrate the sensor system into the CAN-BUS system and consider the in-build sensors such as the accelerometer, capacitive sensor, and an external camera for the artifact’s detection. We will conduct a study with 20 test persons in different driving scenarios: rest, city, highway, and rural areas. After recording the data, we will develop a sensor fusion approach based on a convolutional neural network (CNN) structure. We will compare the reference heart rate with the calculated heart rate and evaluate the algorithms. Based on our data analytics, we will improve the sensor system and repeat the data recording. As a final step, we will evaluate the artifact detection and sensor fusion algorithm. We will answer open research questions such as, for instance, “What percentage of the driving time is usable for a reliable heart rate analysis?”. Results from this project are the basis to answer other, subject- as well as disease-specific research questions.
早期发现症状对于早期发现疾病至关重要。因此,集成到车辆等私人空间中的持续健康监测有可能更早地发现疾病。这可以实现更好的治疗,降低死亡率,并降低医疗保健系统的成本。平均而言,德国人每天在汽车上花费43分钟。因此,我们的目标是建立一个车载传感器系统,将医疗检查集成到我们的日常移动中。我们希望将健康监测系统与多个传感器集成,以测量心电图(ECG)、光电容积描记图(PPG)、远程PPG(rPPG)和心音图(PCG)。冗余传感器数据增加了数据分析的可靠性。我们将传感器系统集成到CAN总线系统中,并考虑内置传感器,如加速度计,电容传感器和外部摄像头的文物的检测。我们将在不同的驾驶场景中对20名测试人员进行研究:休息,城市,高速公路和农村地区。记录数据后,我们将开发一种基于卷积神经网络(CNN)结构的传感器融合方法。我们将比较参考心率与计算心率并评估算法。根据我们的数据分析,我们将改进传感器系统并重复数据记录。作为最后一步,我们将评估伪影检测和传感器融合算法。我们将回答开放性的研究问题,例如,“驾驶时间的百分比有多大可用于可靠的心率分析?”。该项目的结果是回答其他主题以及疾病特定研究问题的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Martin Deserno其他文献
Professor Dr. Thomas Martin Deserno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Martin Deserno', 18)}}的其他基金
Praktische Unterstützung des digitalen Bildmanagements in der radiologischen Routine durch lokale Modellierung und Adressierung des Bildinhaltes über strukturelle Prototypen
通过局部建模和通过结构原型寻址图像内容,为放射常规中的数字图像管理提供实际支持
- 批准号:
21748099 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Entwicklung eines interaktiven VR-basierten Regionalanästhesiesimulators
基于VR的交互式局部麻醉模拟器的开发
- 批准号:
19576470 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Evualation of a novel architecture for content-based image retrieval in medical applications.
评估医疗应用中基于内容的图像检索的新颖架构。
- 批准号:
5309222 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Multiomics for the diagnostic and surveillance of infectious diseases
用于传染病诊断和监测的多组学
- 批准号:
502560 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ICF: Development of a rapid diagnostic test to identify Crimean-Congo Haemorrhagic Fever at the point-of-care
ICF:开发快速诊断测试以在护理点识别克里米亚-刚果出血热
- 批准号:
MR/Y019431/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Investment Accelerator
SBIR Phase I: Development of a SERS-based diagnostic platform for multiplexing ubiquitous inflammatory markers in cancer.
SBIR 第一阶段:开发基于 SERS 的诊断平台,用于多重癌症中普遍存在的炎症标记物。
- 批准号:
2348543 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
- 批准号:
2345816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Blood metabolomics as a next-generation cancer diagnostic platform technology
血液代谢组学作为下一代癌症诊断平台技术
- 批准号:
10067218 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Diagnostic and Therapeutic Potential of Circular RNAs in Autism Spectrum Disorder
环状 RNA 在自闭症谱系障碍中的诊断和治疗潜力
- 批准号:
24K10503 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A novel diagnostic tool leveraging AI for protein design and microfluidics for better cell therapy management
一种利用人工智能进行蛋白质设计和微流体技术以实现更好的细胞治疗管理的新型诊断工具
- 批准号:
10082156 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Test, treat, and connect on site using a dual rapid diagnostic point-of-care test for syphilis and HIV among people who are experiencing houselessness
使用梅毒和艾滋病毒双重快速诊断现场检测对无家可归者进行现场检测、治疗和联系
- 批准号:
489125 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants














{{item.name}}会员




