Tailoring and Manipulation of single photons from DBT molecules with a fast ladder 87Rb quantum memory (DBT-FLAME)

使用快速梯 87Rb 量子存储器 (DBT-FLAME) 定制和操纵 DBT 分子的单光子

基本信息

项目摘要

Photonics is among the most promising platforms for realizing quantum information processing. In general, four major ingredients are required for realizing these applications: photon sources that generate non-classical light, passive linear optical circuits for high fidelity processing, active devices for routing and manipulation of photonic states in real time, and efficient single photon detectors. Photon detectors and passive processors are nowadays well developed, and a huge community is investigating single photon sources. However, the real-time routing and manipulation of single photons is still challenging and rarely addressed. For further progress in optical quantum information processing this is arguably one of today’s biggest roadblocks that will be tackled by this project. The overarching goal of this project is to develop an atomic vapor-based quantum memory for the storage and read-out as well as for processing of single photons emitted by DBT molecules. This key building block in quantum photonics enables the routing and processing of indistinguishable photons from organic molecules. The underlying technological approach is to combine the efficient and on- demand photon generation in organic molecules with quantum memories implemented in warm atomic vapor. The photon source is realized by coupling a DBT molecule to an optical antenna and collection of the photons emitted at 780 nm by using a cryogenic microscope. The memory follows a fast ladder EIT scheme on the D2- line in warm Rb vapor. In our consortium two groups join their complementary technological and experimental expertise, which is quantum optics with atomic systems and quantum nano photonics with organic molecules in an ideal way to ensure the success of the project.
光子学是实现量子信息处理最有前途的平台之一。一般来说,实现这些应用需要四个主要成分:产生非经典光的光子源,用于高保真处理的无源线性光学电路,用于在真实的时间内路由和操纵光子态的有源器件,以及高效的单光子探测器。光子探测器和无源处理器现在发展得很好,并且一个巨大的社区正在研究单光子源。然而,单光子的实时路由和操纵仍然具有挑战性,很少得到解决。为了在光量子信息处理方面取得进一步的进展,这可以说是今天这个项目将要解决的最大障碍之一。该项目的总体目标是开发一种基于原子蒸气的量子存储器,用于存储和读出以及处理DBT分子发射的单光子。量子光子学中的这一关键构建块使得有机分子中不可区分的光子的路由和处理成为可能。潜在的技术方法是将有机分子中高效且按需的光子产生与在温暖的原子蒸气中实现的量子存储器结合联合收割机。光子源是通过将DBT分子耦合到光学天线并通过使用低温显微镜收集在780 nm处发射的光子来实现的。该存储器遵循一个快速的阶梯EIT计划的D2线在温暖的Rb蒸汽。在我们的联盟中,两个小组加入了他们互补的技术和实验专业知识,即原子系统的量子光学和有机分子的量子纳米光子学,以确保项目的成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Andreas Wolfgang Schell, Ph.D.其他文献

Professor Dr. Andreas Wolfgang Schell, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Single-molecule Manipulation and Interaction Facility (SMIF)
单分子操作和相互作用设施(SMIF)
  • 批准号:
    LE240100010
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Demonstration of quantum state conversion between photon polarization and electron spin states by manipulation of a single photo-excited electron spin
通过操纵单个光激发电子自旋来演示光子偏振和电子自旋态之间的量子态转换
  • 批准号:
    22KJ2076
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Preforming Cell based on single fibre manipulation
基于单纤维操控的预成型单元
  • 批准号:
    508954384
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Manipulation of single spins in ferroelectric oxides from first principles
从第一原理操控铁电氧化物中的单自旋
  • 批准号:
    2223486
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Precise and quantitative carrier-envelope phase control of single-cycle pulses for ultrafast dynamics manipulation
用于超快动态操纵的单周期脉冲的精确定量载波包络相位控制
  • 批准号:
    22K04976
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Acquisition of a core research microscope for imaging long-term cellular signaling dynamics and optogenetic manipulation
购买核心研究显微镜,用于长期细胞信号动力学和光遗传学操作成像
  • 批准号:
    10797751
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
An in vitro/in vivo system for targeted retinal ganglion cell subtype manipulation
用于靶向视网膜神经节细胞亚型操作的体外/体内系统
  • 批准号:
    10546443
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Discovery and manipulation of transcription factors to restore long term stem cell repopulation in aged bone-marrow
发现和操纵转录因子以恢复衰老骨髓中的长期干细胞增殖
  • 批准号:
    10334958
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Discovery and manipulation of transcription factors to restore long term stem cell repopulation in aged bone-marrow
发现和操纵转录因子以恢复衰老骨髓中的长期干细胞增殖
  • 批准号:
    10676080
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
An in vitro/in vivo system for targeted retinal ganglion cell subtype manipulation
用于靶向视网膜神经节细胞亚型操作的体外/体内系统
  • 批准号:
    10354977
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了