Swampland Conjectures in String Theory

弦理论中的沼泽猜想

基本信息

项目摘要

The precondition for a Heisenberg Programme funding is high scientific quality and originality of the research project at international level and suitability for further qualification as a university teacher. Applicants need to meet all the requirements for appointment to a permanent professorship.The aim of this programme is to enable outstanding scientists to prepare for a scientific leadership function, and simultaneously work on further research topics. This research does not necessarily need to be planned and carried out in the form of a project.For this reason, and unlike the procedure in other funding programmes, both the abstracts of applications and final reports are not required and will therefore not be published in GEPRIS.
海森堡计划资助的先决条件是高科学质量和国际水平的研究项目的原创性,并适合作为大学教师的进一步资格。申请人需要满足任命为永久教授的所有要求。该计划的目的是使杰出的科学家为科学领导职能做好准备,同时从事进一步的研究课题。这项研究并不一定需要以项目形式规划和进行,因此,与其他资助计划的程序不同,申请摘要和最后报告都不需要,因此不会在GEPRIS上发表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Daniel Junghans其他文献

Dr. Daniel Junghans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

LEAP-MPS: Two Conjectures in Mathematical Relativity
LEAP-MPS:数学相对论中的两个猜想
  • 批准号:
    2316965
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The refined Arthur--Langlands conjectures beyond the supercuspidal case
超越超尖角情况的精致亚瑟-朗兰兹猜想
  • 批准号:
    2301507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combinatorical properties of special symmetic polynomials: results and conjectures
特殊对称多项式的组合性质:结果和猜想
  • 批准号:
    575062-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
  • 批准号:
    559668-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    DGECR-2022-00432
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    RGPIN-2022-03093
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Main Conjectures for Families of Automorphic Forms
自守形式族的主要猜想
  • 批准号:
    RGPIN-2018-04392
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Main Conjectures for Families of Automorphic Forms
自守形式族的主要猜想
  • 批准号:
    RGPIN-2018-04392
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Selmer groups, arithmetic statistics, and parity conjectures.
Selmer 群、算术统计和宇称猜想。
  • 批准号:
    EP/V006541/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
  • 批准号:
    559668-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了