Optimal experimental design and optimal modeling for parameter identification of inhomogeneousproblems
非齐次问题参数识别的优化实验设计和优化建模
基本信息
- 批准号:516711743
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The reliable prediction of numerical simulations requires not only physically based mathematical modeling but also determination of the associated model constants based on experimental data. However, deficiencies of experimental data as well as model deficiency may have an impact on the stability of the identified parameters. This application is based on the following working hypothesis: Stable material parameters are a prerequisite for a reliable prediction and in this way for the validation of a model. The overall aim of this proposal is therefore an optimal experimental design as well as an optimal model design for stable identification of material parameters for models with partial differential equations for hyperelasticity and plasticity. The assessment of stability and thus reliability of the identified parameters is based on a confidence matrix and an associated design function. The design function is intended to give the goodness of the estimation in terms of a real number, which allows to compare different estimations and thus provides the opportunity for optimization. In this research project, three design functions known from the literature on optimal experimental design are used. Initially, control variables will be used as design variables to control load, geometry as well as position of the measuring points. Regarding the confidence matrix, three options are considered. For confidence matrices calculated by aid of statistics, the required experiments are usually time consuming and cost intensive. One way to artificially increase the number of experiments is to generate synthetic data using a stochastic model. It has to be noted, that only aleatory but no epistemic uncertainties are taken into account. To represent the synthetic data, an existing method based on B-splines for spatial dependencies is extended to time dependencies. Another aim of the research project is to estimate the reliability of stable parameter identification with respect to the model structure, whereby material parameters are now also variables of the design function. The main result of the project will be material parameters for models of hyperelasticity and plasticity with optimized confidence ranges with respect to experimental and model design. Final investigations are intended to verify the above working hypothesis.
数值模拟的可靠预测不仅需要基于物理的数学建模,还需要根据实验数据确定相关的模型常数。然而,实验数据的缺陷以及模型的缺陷可能会对所识别的参数的稳定性产生影响。该应用基于以下工作假设:稳定的材料参数是可靠预测的先决条件,并以这种方式验证模型。因此,本建议的总体目标是一个最佳的实验设计,以及一个最佳的模型设计的材料参数的稳定识别模型与偏微分方程的超弹性和塑性。稳定性的评估,从而确定的参数的可靠性是基于一个置信矩阵和相关的设计功能。设计函数旨在根据真实的数给出估计的优度,这允许比较不同的估计,从而提供优化的机会。在这个研究项目中,三个设计函数已知的文献中的最优实验设计。最初,控制变量将被用作设计变量,以控制载荷、几何形状以及测量点的位置。关于置信矩阵,考虑了三个备选方案。对于通过统计学计算的置信矩阵,所需的实验通常是耗时且成本密集的。人为增加实验数量的一种方法是使用随机模型生成合成数据。必须指出的是,只有偶然的,但没有认识上的不确定性考虑在内。为了表示合成数据,现有的方法基于B样条的空间依赖性扩展到时间依赖性。该研究项目的另一个目的是估计模型结构的稳定参数识别的可靠性,其中材料参数现在也是设计函数的变量。该项目的主要成果将是超弹性和塑性模型的材料参数,并在实验和模型设计方面具有优化的置信范围。最后的调查旨在验证上述工作假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Ismail Caylak, since 3/2024其他文献
Dr.-Ing. Ismail Caylak, since 3/2024的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr.-Ing. Ismail Caylak, since 3/2024', 18)}}的其他基金
Goal-oriented adaptivity for nonlinear homogenization based on hierarchical models
基于分层模型的非线性均质化目标导向自适应性
- 批准号:
352532268 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Experiments, modeling and parameter identification with inhomogeneous strain states for plastics with strain inducedanisotropy
具有应变诱导各向异性的塑料的非均匀应变状态的实验、建模和参数识别
- 批准号:
326965247 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Fuzzy-stochastic three-scale modeling for polymorphic uncertainty in lightweight structures
轻质结构多态不确定性的模糊随机三尺度建模
- 批准号:
311889577 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Goal-oriented adaptive finite elements for parameter identification of conventional and additive micromorphic continuum models
用于传统和加性微形态连续体模型参数识别的目标导向自适应有限元
- 批准号:
226812732 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Experimental and numerical determination of relationships between process variables of thermo-mechanical material treatment and mechanical properties in graded mixed microstructures with bimodal grain size distribution
热机械材料处理工艺变量与双峰晶粒尺寸分布的分级混合微观结构机械性能之间关系的实验和数值确定
- 批准号:
390307525 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
A two scale model for damage mechanisms during machining of carbon fibre reinforced plastics
碳纤维增强塑料加工过程中损伤机制的二尺度模型
- 批准号:
435069425 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
TXNIP调控实验性青光眼视乳头星形胶质细胞的激活及其机制研究
- 批准号:82371048
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GLS1通过α-KG调控表观遗传修饰在实验性近视巩膜重塑中的作用机制
- 批准号:82371092
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
多发性硬化相关microRNA和靶基因鉴定及其对Th17和Treg细胞生成及分化的作用
- 批准号:81171120
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Parameter identification with optimal experimental design for engineering biology
工程生物学优化实验设计的参数识别
- 批准号:
EP/Y00342X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Optimal Experimental Design through Contact: Towards Robots that Plan to Learn
职业:通过接触进行最佳实验设计:迈向计划学习的机器人
- 批准号:
2238066 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
SCH: Spine-Hip Exoskeletons with Learning-Based Optimal Control for Low Back Pain Alleviation
SCH:具有基于学习的最佳控制的脊柱-髋部外骨骼,可缓解腰痛
- 批准号:
10816884 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A decision tool to inform the optimal use of non-pharmaceutical interventions during the COVID-19 pandemic
一个决策工具,用于告知在 COVID-19 大流行期间如何最佳使用非药物干预措施
- 批准号:
10738630 - 财政年份:2023
- 资助金额:
-- - 项目类别:
How does Cytomegalovirus use interferon lambda for optimal spread
巨细胞病毒如何利用 lambda 干扰素实现最佳传播
- 批准号:
10552002 - 财政年份:2022
- 资助金额:
-- - 项目类别:
How does Cytomegalovirus use interferon lambda for optimal spread
巨细胞病毒如何利用 lambda 干扰素实现最佳传播
- 批准号:
10429668 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging data synthesis to identify optimal and robust strategies for HIV elimination among substance-using MSM
利用数据合成来确定消除吸毒 MSM 中艾滋病毒的最佳和稳健策略
- 批准号:
10402179 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging data synthesis to identify optimal and robust strategies for HIV elimination among substance-using MSM
利用数据合成来确定消除使用药物的 MSM 中的 HIV 的最佳且稳健的策略
- 批准号:
10612874 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Failure process and optimal design of hybrid adhesive joints - a microscale experimental and numerical approach
混合粘合接头的失效过程和优化设计——微尺度实验和数值方法
- 批准号:
EP/T020695/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Optimizing Mealtime (OPTIMAL): Development and Pilot Testing of a Person-Centered Mealtime Care Intervention for Nursing Home Residents with Alzheimer's Disease and Related Dementias (ADRD)
优化进餐时间 (OPTIMAL):针对患有阿尔茨海默氏病和相关痴呆症 (ADRD) 的疗养院居民开发以人为本的进餐护理干预措施并进行试点测试
- 批准号:
10263151 - 财政年份:2020
- 资助金额:
-- - 项目类别: