Mathematical Studies of melting, solidification and growth phenomena in material science

材料科学中熔化、凝固和生长现象的数学研究

基本信息

项目摘要

Towards mathematical understanding of melting, solidification and growth processes in material sciences, we have carried theoretical research from experiments, modeling and complementarily computer analysis. Since the head investigator had moved from the university of Tokyo to Hiroshima University at the second year of the research term, some investigators had to he altered from the original members but there was no trouble to carry out the research plan. Mimura has mainly studied pattern formation arising in nonlinear non equilibrium systems. In particular, has investigated dendritic patterns in biological and chemical systems, in order to reveal the universality in mechanism of such patterns in natural sciences. Ohta has studied dynamics of micro phase separation, as the basic theory in polymer science. Ishikawa has experimentally studied dendritic growth in material process and in particular, and has studied the effect of micro gravity on growth of colloid crystal. Oharu has develop … More ed nonlinear semi group theory to extend basic theory of free boundary problems. Funaki has studied interfacial dynamics from probabilistic approach. Matano, Yanagida and Kimura have investigated analytically and numerically mean curvature equations which describe interfaces. Yamada and Kusano have developed numerical methods to solve reaction-diffusion systems on a sphere. Tsujikawa and Mimura has studied growth process in biological systems by using singular limit methods. Sakamoto has developed singular perturbation methods and established the internal layer theory in higher dimensions. Onda has made fractalization of the surface of shapes and has obtained super water -repellent surfaces from theoretic and experimenrtal standing points. Ishimura has analyzed spiral patterns which arises in growth process in materials by using curvature flow theory. Okuzono has analyzed dynamics of two phase flow in droplet dissipative systems. Ueyama has given theoretical understanding of self-replication process in reaction-diffusion systems by using computer aided analysis. The above results have been reported in several conferences inside and outside of Japan. Most of them were talked at the Applied Mathematics Meeting in Japan which is held every year and were published in their proceedings. Less
为了从数学上理解材料科学中的熔化、凝固和生长过程,我们从实验、建模和辅助的计算机分析等方面进行了理论研究。由于首席研究员在研究期的第二年从东京大学转到了广岛大学,一些研究员不得不改变原来的成员,但研究计划的执行没有遇到任何麻烦。三村主要研究非线性非平衡系统中的斑图形成。特别是研究了生物和化学系统中的树枝状模式,以揭示这种模式在自然科学中的普遍性。微相分离动力学是高分子科学的基础理论,Ohta等人对微相分离动力学进行了研究。石川对材料加工中的枝晶生长进行了实验研究,特别是对微重力对胶体晶体生长的影响进行了研究。小春发展了 ...更多信息 艾德推广了自由边界问题的基本理论。Funaki从概率方法研究了界面动力学。Matano、Yanagida和Kimura研究了描述界面的平均曲率方程的解析和数值方法。Yamada和Kusano发展了求解球上反应扩散方程组的数值方法。Tsujikawa和Mimura用奇异极限方法研究了生物系统的生长过程。Sakamoto发展了奇异摄动方法,建立了高维的内层理论。Onda对形状表面进行了分形处理,从理论和实验的角度获得了超疏水表面。石村用曲率流理论分析了材料生长过程中出现的螺旋纹。Okuzono分析了液滴耗散系统中的两相流动力学。Ueyama通过使用计算机辅助分析给出了反应扩散系统中自复制过程的理论理解。上述结果已在日本国内外的几次会议上报告。他们中的大多数人都谈到了应用数学会议在日本举行,每年举行,并发表在他们的诉讼。少

项目成果

期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Matano: "The global attractor of semilinear parabolic equations on S_1"Discrete and Continuous Dynamical Systems. 3. 1-14 (1997)
H.Matano:“S_1 上半线性抛物线方程的全局吸引子”离散和连续动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Matsumoto: "A nonlinear nonlocal transport system related to the cross-bridge mechanism of muscle contraction"Nonlinear Anal. TMA. (in press). (2000)
T. Matsumoto:“与肌肉收缩的跨桥机制相关的非线性非局部传输系统”非线性肛门。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Hayakawa: "Hydrogels containing immobilized bilayer mombranes"Lamgmuir. 13・14. 3595-3597 (1997)
M.早川:“含有固定双层膜的水凝胶”Lamgmuir 13・14(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Mimura: "Rezction-diffusion modelling of baclerial colony patterns"Physica A. (in press). (2000)
M.Mimura:“细菌菌落模式的反射扩散模型”Physica A.(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kimura: "Numerical Analysis of Moving Boundary problems Using the Boundary Tracking Method" Japan Journal of Industrial and Applied Mathematics. 14. 373-398 (1997)
M.Kimura:“使用边界跟踪方法对移动边界问题进行数值分析”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIURA Masayasu其他文献

MIURA Masayasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIURA Masayasu', 18)}}的其他基金

Mathematical Studies of singularities governed by nonlinear phenomena
非线性现象控制的奇点的数学研究
  • 批准号:
    08404005
  • 财政年份:
    1996
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Integrated Studies towards New Development in Mathematical Sciences
数学科学新发展的综合研究
  • 批准号:
    07304017
  • 财政年份:
    1995
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Development of reaction-diffusion systems - Studies of singular limit methods -
反应扩散系统的开发 - 奇异极限方法的研究 -
  • 批准号:
    12304006
  • 财政年份:
    2000
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding of Spatio-temporal patterns by Singular Limit Methods
通过奇异极限方法理解时空模式
  • 批准号:
    11214201
  • 财政年份:
    1999
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了