Mathematical Studies of singularities governed by nonlinear phenomena

非线性现象控制的奇点的数学研究

基本信息

项目摘要

Towards understanding of nonlinear phenomena, we have analytically and complementarily numerically investigated singularities governed by these phenomena from different aspects in mathematics. Since the head investigator had moved from University of Tokyo to Hiroshima University from the second year of the research plan, the original members of investigators had to be altered but we have achieved the purpose of the proposed research. Mimura has been continuously studied pattern formation arising in reaction-diffusion systems. In particular, he has developed singular limit methods to understand dynamics of such patterns, Ueyama numerically studied this problem. Sakamoto has considered singular perturbation procedures to establish the theory of internal layers in higher dimensions. Matano has investigated qualitative properties of solutions of reaction-diffusion systems by using the theory of infinite dimensional dynamical systems. Nagai has discussed the qualitative properties of blow u … More p problem, which is one of the singularities arising in nonlinear diffusion systems. For the development of basic singularity theories in mathematics. Kohno, Shishikura and Kubo have respectively developed theories of geometry and complex dynamical systems. Oharu has developed the nonlinear semi group theory of evolutional equations. Tokihiro has discussed the methods of super discriminations and has revealed the relation between cell automaton and the related differential equations. Yamamoto has established the theoretical frame work of inverse problems which are one of the singular problems of partial differential equations. Yanagida and Kimura have studied analytically and numerically mean curvature equations. On the other hand, from application viewpoints. Inaba has considered epidemic models arising in mathematical demography. Mimura and Sakaguchi have given the theoretical implication on diversity of spatial pattern arising in biological systems by the analysis of mathematical models. Yamada and Hayashi have carried out large scale computer simulations to understand earth circulation phenomenon. The above results have been reported in several conferences inside and outside of Japan. Most of them were talked at the Applied Mathematics Meeting in Japan which was held every year and were published in their proceedings. Less
为了更好地理解非线性现象,我们从数学的不同方面对这些现象所支配的奇异性进行了分析和补充的数值研究。从研究计划的第二年开始,由于首席研究员从东京大学转到了广岛大学,因此不得不改变研究员的原始成员,但我们已经实现了拟议研究的目的。Mimura一直在研究反应扩散系统中产生的图案形成。特别是,他开发了奇异极限方法来了解动态的这种模式,Ueyama数值研究了这个问题。坂本考虑了奇异摄动方法来建立更高维的内层理论。Matano利用无穷维动力系统理论研究了反应扩散方程组解的定性性质。永井讨论了吹胀的定性性质, ...更多信息 p问题,这是非线性扩散系统中出现的奇性之一。发展数学中的基本奇点理论。Kohno,Shishikura和Kubo分别发展了几何和复杂动力系统的理论。Oharu发展了发展方程的非线性半群理论。时弘讨论了超判别法,揭示了元胞自动机与相关微分方程的关系。Yamamoto建立了偏微分方程奇异问题之一的反问题的理论框架。Yanagida和Kimura对平均曲率方程进行了解析和数值研究。另一方面,从应用的角度来看。稻叶考虑了数学人口学中出现的流行病模型。Mimura和Sakaguchi通过数学模型的分析给出了生物系统中空间格局多样性的理论含义。Yamada和Hayashi进行了大规模的计算机模拟,以了解地球循环现象。上述结果已在日本国内外的几次会议上报告。他们中的大多数人都谈到了应用数学会议在日本举行,每年并发表在他们的诉讼。少

项目成果

期刊论文数量(65)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Mimura: "Aggregating pattern dymnamics in a chemotaxis model including growth"Physica A. 230. 499-543 (1996)
M.Mimura:“包括生长在内的趋化模型中的聚合模式动力学”Physica A. 230. 499-543 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Mimura: "Non-annihilation of traveling pulses in reaction-diffusion systems"J. Methods Appl. of Anal.. (in press). (2000)
M. Mimura:“反应扩散系统中行进脉冲的不湮灭”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Matano: "The global attractor of semilinear parabolic equations on SィイD21ィエD2"Discrete and Dynamical Systems. 3. 1-14 (1997)
H. Matano:“离散和动力系统上半线性抛物线方程的全局吸引子。3. 1-14 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I.Kubo: "White noise analysis associated with sequences of umnbers"Infinite Dimensional Analysis. 12・3. 315-336 (1999)
I.Kubo:“与数字序列相关的白噪声分析”无限维分析12・3(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I. Kubo: "White noise analysis associated with sequences of numbers."Infinite Dimensional Analysis. 12・3. 315-336 (1999)
I. Kubo:“与数字序列相关的白噪声分析”。无限维分析 12・3(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIURA Masayasu其他文献

MIURA Masayasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIURA Masayasu', 18)}}的其他基金

Mathematical Studies of melting, solidification and growth phenomena in material science
材料科学中熔化、凝固和生长现象的数学研究
  • 批准号:
    09354001
  • 财政年份:
    1997
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Integrated Studies towards New Development in Mathematical Sciences
数学科学新发展的综合研究
  • 批准号:
    07304017
  • 财政年份:
    1995
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Asymptotic and Singular Perturbation Methods for Bifurcation Problems with Applications
分岔问题的渐近奇异摄动方法及其应用
  • 批准号:
    9973203
  • 财政年份:
    1999
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Asymptotic & Singular Perturbation Methods for Bifurcation Problems with Applications"
数学科学:“渐近
  • 批准号:
    9625843
  • 财政年份:
    1996
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Research: Topological and Singular Perturbation Methods with Applications to Nonlinear Differential Equations
美日合作研究:拓扑和奇异微扰方法及其在非线性微分方程中的应用
  • 批准号:
    9315117
  • 财政年份:
    1994
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic and Singular Perturbation Methods for Bifurcation Problems with Applications
数学科学:分岔问题的渐近奇异摄动方法及其应用
  • 批准号:
    9496238
  • 财政年份:
    1994
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Asymptotic and Singular Perturbation Methods for Bifurcation Problems with Applications
数学科学:分岔问题的渐近奇异摄动方法及其应用
  • 批准号:
    9308009
  • 财政年份:
    1993
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic and Singular Perturbation Methods for Bifurcation and Moving Boundary Problems with Applications
数学科学:分岔和移动边界问题的渐近奇异摄动方法及其应用
  • 批准号:
    9001402
  • 财政年份:
    1990
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了