Development of Numerical Method for Mesoscopic Flow
细观流动数值方法的发展
基本信息
- 批准号:09680474
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For the research of microscopic phenomena, molecular dynamics model has been proposed and for macroscopic level various kinds of hydrodynamic solvers have been investigated for a long time. In this research, we search for a numerical method to treat mesoscopic level that means the intermediate scale between and microscopic and macroscopic levels . For this purpose, we have used the CIP method which has been proposed by the author and has been proved to be accurate even with coarse grid system. In this research, we have used the Boltzmann equation which is six dimensions in phase space. Thus time evolution is merely an advection through six dimensions. Since the CIP method has been proved to be quite effective in solving advection equation, we applied this method and for simplicity we repeated one-dimensional CIP method to extend it to hyper-dimensional space.In order to test the algorithm, we solved two and four dimensional Vlasov equation which is collisionless Boltzmann equation, and applied it to linear Landau damping and nonlinear two-stream instability coupled with electric fields.Comparison with conventional particle codes and spline method has been done and it has been proven that particle codes need 10-100 times more memory than the CIP method for obtaining the same results. For a sufficiently accurate form of velocity distribution function required by mesoscopic calculations, particle codes needed 100 times more memory than the CIP method. Distribution functions given by spline methods become negative and have large spikes. These comparisons show the effectiveness of the CIP method in this research.We have varied the velocity grids and found that even with velocity grids less than 10 the CIP can give quite an accurate result. Finally, six dimensional code has been constructed and run on personal computer. One Alpha-chip-based personal computer needed only 6.7 hours for the calculation of Landau damping with 16 X 16 X 16 X 8 X 8 X 8 grids.
对于微观现象的研究,人们提出了分子动力学模型,而对于宏观层次,人们研究了各种流体动力学求解方法。在这项研究中,我们寻求一种数值方法来处理介观水平,即介于微观和宏观水平之间的中间尺度。为此,我们使用了作者提出的CIP方法,该方法已被证明即使在粗网格系统下也是准确的。在本研究中,我们使用了相空间中的六维Boltzmann方程。因此,时间演化只是一场穿越六个维度的平流。由于CIP方法在求解对流方程方面已经被证明是非常有效的,我们应用了该方法,为了简单起见,我们将一维CIP方法推广到超维空间。为了验证算法的有效性,我们求解了二维和四维Vlasov方程,该方程是无碰撞的Boltzmann方程,并将其应用于线性Landau阻尼和非线性双流不稳定性与电场的耦合。与传统的粒子编码和Spline方法进行了比较,证明了粒子编码获得相同结果需要的内存是CIP方法的10-100倍。对于介观计算所需的足够精确的速度分布函数形式,粒子代码所需的内存是CIP方法的100倍。由样条法给出的分布函数变为负值并且有很大的尖峰。这些比较表明了CIP方法在本研究中的有效性。我们改变了速度网格,发现即使在速度网格小于10的情况下,CIP方法也可以给出相当准确的结果。最后,构造了六维码,并在个人计算机上运行。一台基于Alpha芯片的个人计算机仅需6.7小时即可计算16×16×16×8网格的朗道阻尼力。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
矢部 孝: "固体・液体・気体の汎用シミュレーシュン手法(解説)" シミュレーション. 17巻・3号. 7-13 (1998)
Takashi Yabe:“固体、液体和气体的通用模拟方法(解释)”模拟,第 17 卷,第 3.7-13 期(1998 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ogata and T.Yabe: "Shock Capturing with Improved Numerical Viscosity in Primitive Euler Representation" Comput.Phys.Commun.in press. (1999)
Y.Ogata 和 T.Yabe:“在原始欧拉表示中使用改进的数值粘度捕获冲击”Comput.Phys.Commun.in 出版社。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ogata,T.Yabe: "Shock Capturing with Improved Numerical Viscosity In Primitive Euler Representation" Comput.Phys.Commun.(印刷中).
Y.Ogata、T.Yabe:“在原始欧拉表示中使用改进的数值粘度捕获冲击”Comput.Phys.Commun.(正在印刷中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Tanaka, T.Yabe and H.Wu: "A Class of Conservative Formulation of the CIP Method" CFD Journal. in press. (1999)
R.Tanaka、T.Yabe 和 H.Wu:“CIP 方法的一类保守公式”CFD 期刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Yabe: "Computational Fluid Dynamics Review 1998 (分担)" World Scientific, 1130 (1998)
T.Yabe:“计算流体动力学评论 1998(分享)” World Scientific,1130 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YABE Takashi其他文献
YABE Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YABE Takashi', 18)}}的其他基金
Mg recycle method using Solar-pumped-laser for Mg fuel cell
镁燃料电池太阳能泵浦激光镁回收方法
- 批准号:
20560032 - 财政年份:2008
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Simulations of Laser-Micro-Airplane by the CIP Method and its Application to CO_2 measurement
CIP法模拟激光微型飞机及其在CO_2测量中的应用
- 批准号:
15607007 - 财政年份:2003
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Numerical Algorithm for Multi-Phase Flow by Distributed Computer
分布式计算机多相流数值算法的开发
- 批准号:
11650166 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A numerical method to solve matrix-valued differential inequalities with applications in dynamical systems
求解矩阵值微分不等式的数值方法及其在动力系统中的应用
- 批准号:
2889464 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Studentship
Development of numerical method for bubbly flows inside and outside dense vertical structures
密集垂直结构内外气泡流数值方法的发展
- 批准号:
23K03660 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation for microscopic failure mechanism of CFRP and development for multiscale numerical method
CFRP微观失效机理研究及多尺度数值方法开发
- 批准号:
23K03588 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A numerical method for stochastic differential equations for interest rate modeling and regulation after the global financial crises of 2007-2008
2007-2008 年全球金融危机后利率建模和监管的随机微分方程数值方法
- 批准号:
21K03365 - 财政年份:2021
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of numerical method for interaction of flexible structures and bubbly flow
柔性结构与气泡流相互作用数值方法的发展
- 批准号:
20K14652 - 财政年份:2020
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of numerical method for liquid movement inside of tank and strongly coupling with ship motion and structural response at an actual sea condition
发展实际海况下储罐内液体运动并与船舶运动和结构响应强耦合的数值方法
- 批准号:
19K04869 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a numerical method for analyzing radio-frequency sheaths in arbitrarily oriented magnetic fields
开发用于分析任意方向磁场中射频鞘层的数值方法
- 批准号:
19K03793 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fiber Beads: Development of a numerical method for the synthesis of fiber-reinforced bead patterns
纤维珠:开发用于合成纤维增强珠图案的数值方法
- 批准号:
431606085 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
Research Grants
Innovative research for self-validating numerical method of infinite dimensional problems
无限维问题自验证数值方法的创新研究
- 批准号:
18K03434 - 财政年份:2018
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of Numerical Method of Local Plastic Strain by Nanoscale Marking
纳米标记局部塑性应变数值方法的建立
- 批准号:
18K04751 - 财政年份:2018
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)