Interaction Problems on Soil and Structures using BE/FE Hibrid Techniques
使用 BE/FE 混合技术解决土壤和结构的相互作用问题
基本信息
- 批准号:60550319
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1985
- 资助国家:日本
- 起止时间:1985 至 1986
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The coupling procedure,using finite and boundary elements,is proposed numerically to analize interaction problems on soil and structures. Various problems, such as footings on layers, slope problems with fractured masses, steady state heat conduction problems and unsteady state heat ones are calculated by this proposed scheme. Results are summarised as follows:(1)This procedure is efficiently applicable to complicated boundaries, namely, rather complicated boundaries are discretized by finite elements and simpler ones are done by boundary elements. Then, not only input data but also computer resources are reduced.(2) If a material body consists of subdomains whose material constants are different, joint elements are introduced connecting the subdomains. Then slipping phenomena between subdomains can be treated. If several subdomains are entirely connected without slip, we may choose spring constants of the joint elements approximately as <K_s> =100G and <K_n> =100E.(3) The equivalent FE scheme is much easier to program in a computer code. However, this scheme needs to invert coefficient matrix G. Then, the BE region should be divided into several subdomains in order to reduce the size of G. In this divided procedure, the joint elements mentioned above can also be introduced.(4) For the non-linear stress transfer analysis, the region where failure is supposed is discretized by finite elements, and others by boundary elements. This is one of the most realistic discretization schemes for the infinite problem. In this research the other hibrid technique is developed using SUP method and BE method. It is concluded that the proposed coupling procedure is very efficient to analyze various infinite problems.
本文提出了一种用有限元和边界元耦合的方法来数值分析土与结构的相互作用问题。用该格式计算了层状地基问题、裂隙体边坡问题、稳态热传导问题和非稳态热传导问题。结果表明:(1)该方法适用于复杂边界,即较复杂的边界用有限元离散,较简单的边界用边界元离散。这样,不仅减少了输入数据,而且减少了计算机资源。(2)如果一个材料体由材料常数不同的子域组成,则引入连接子域的连接单元。这样就可以处理子域间的滑移现象。如果几个子域完全连接而无滑移,我们可以选择近似为<K_s>= 100 G和<K_n>= 100 E的节点单元的弹簧常数。(3)等价的有限元格式更容易用计算机代码编程。然而,该方案需要对系数矩阵G求逆。然后将BE区域划分为若干子域,以减小G的规模。在这个划分过程中,也可以引入上述的节点元素。(4)对于非线性应力传递分析,假定失效的区域用有限元离散,其它区域用边界元离散。这是一个最现实的离散计划的无限问题。本研究还采用双杂交法和BE法建立了另一种杂交技术。结果表明,所提出的耦合过程是非常有效的分析各种无限的问题。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
三井康司: 境界要素法研究会第11回例会資料. 1-61 (1985)
Koji Mitsui:边界元法研究组第 11 次例会材料 1-61 (1985)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsui,Y.: Int.J.Numer.Anal.Meth.Geomech.9. 161-172 (1985)
三井,Y.:Int.J.Numer.Anal.Meth.Geomech.9。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shimizu,S.: ECCS collo.Stab.plate and shell struct.85-94 (1987)
Shimizu,S.:ECCS collo.Stab.板和壳结构.85-94 (1987)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
市川康明: 岩盤工学における数値解析法シンポジュウム論文集. 1. 1-6 (1986)
Yasuaki Ichikawa:岩石工程数值分析方法研讨会论文集。1. 1-6 (1986)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大上俊之: 境界要素法論文集. 2. 293-298 (1985)
Toshiyuki Ogami:边界元法论文集 2. 293-298 (1985)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MITSUI Yasushi其他文献
MITSUI Yasushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MITSUI Yasushi', 18)}}的其他基金
THE SYNTHETIC RESEARCH ON CONSTRUCTION OF LARGE-SCALE WOODEN BRIDGE STRUCTURE
大型木桥结构施工综合研究
- 批准号:
10555153 - 财政年份:1998
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Study on Application of Homogenization Method in Structural Engineering
均质化方法在结构工程中的应用研究
- 批准号:
06805040 - 财政年份:1994
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
A NOTE ON SIMPLIFIED NUMERICAL ANALYSIS OF INFLATED CYLINDRICAL BEAM STRUCTURES
充气圆柱梁结构简化数值分析的注解
- 批准号:
03805037 - 财政年份:1991
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Continuing Grant
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
- 批准号:
2883532 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Studentship
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
- 批准号:
23K08691 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)