Small-Scale Structure of Turbulence

小尺度湍流结构

基本信息

  • 批准号:
    61540279
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1986
  • 资助国家:
    日本
  • 起止时间:
    1986 至 1987
  • 项目状态:
    已结题

项目摘要

The small-scale structure of turbulence was investigated by solving the Navier-Stokes equation numerically. The high-symmetry was imposed on the velocity field to save the computation time and the memory capacity. The following five subjects were mainly investigated.(1) Small-scale structure of turbulence We realized the fully developed turbulence with the micro-scale Reynolds number <similar or equal> 200. The Kolmogorov similarity was confirmed to hold in the energy spectrum. The Kolmogorov power law of the energy spectrum in the inertial range was observed with Kolmogorov constant 1.8. The probability density distribution of the velocity derivative and the energy dissipation rate, which characterize the intermittent structure of turbulence, were found to have nuiversal forms independent of the large-scale motive c(2) Energy decay law The power law of energy, which had been observed by experiments and preficted by statistical theories of turbulence, was confirmed quantitatively for the first time as numerical simulation.(3) Chaos in a Navier-Stokes flow We found that the velocity field which is excited by a steady external force undergoes the following series of transitions as the Reynolds number is increased: Steady -> simply periodic -> doubly periodic ->triply periodic -> chaotic motions.(4) MHD trubulence We found that the dynamo effect, by which the kinetic energy is converted into the magnetic energy, occurs when the Reynolds number exceeds a critical value. The kinetic and magnetic energy spectra obey power laws in the statistically equilibrium state.(5) Reconnection of vortex tubes In order to investigate the dynamics of thehelicity, which is one of the important quantities in the theory of turbulence we made a numerical simulation of a knotted vortex tube. The helicity was found to be conserved in the inviscid limit. A new phenomenon called BRIDGING was observed in the process of vortex reconnection.
通过数值求解Navier-Stokes方程,研究了湍流的小尺度结构。为了节省计算时间和内存容量,对速度场施加了高度对称性。主要研究了以下五个主题。(1)湍流的小尺度结构我们实现了微尺度雷诺数200的充分发展的湍流<similar or equal>。证实了Kolmogorov相似性在能谱中成立。在惯性范围内的能谱的Kolmogorov幂律与Kolmogorov常数1.8观察。发现表征湍流间歇结构的速度导数和能量耗散率的概率密度分布具有与大尺度运动无关的数值形式。(2)能量衰减规律。(3)我们发现,当雷诺数增加时,由定常外力激励的速度场经历了以下一系列的转变:定常-&gt;单周期-&gt;双周期-&gt;三周期-&gt;混沌运动。(4)我们发现当雷诺数超过一个临界值时,会发生发电机效应,通过发电机效应,动能被转换成磁能。在统计平衡态下,动能谱和磁能谱服从幂律。(5)涡流管的再连接为了研究湍流理论中的重要物理量之一螺旋度的动力学性质,我们对打结涡流管进行了数值模拟。螺旋度在无粘极限下是守恒的。在涡旋重联过程中观察到一种新的现象,称为桥接现象。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
木田重雄: 数理解析研究所講究録. 606. 1-1 (1987)
Shigeo Kida:数学分析研究所的 Kokyuroku 606. 1-1 (1987)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shigeo Kida: "Complex Singularity of a Two-Dimensional Flow" J. Phys. Soc. Japan.
Shigeo Kida:“二维流的复杂奇异性”J. Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
木田重雄: Fluid Dyn.Res.
Shigeo Kida:流体动力学研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
木田重雄: Lecture Notes in Numenrical & Applied Analysis.
Shigeo Kida:数值与应用分析讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
木田重雄: J.Phys.Soc.Japan.
Shigeo Kida:J.Phys.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIDA Shigeo其他文献

KIDA Shigeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIDA Shigeo', 18)}}的其他基金

Fundamental Properties of Flows in a Precessing Sphere
进动球内流动的基本性质
  • 批准号:
    24540416
  • 财政年份:
    2012
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accurate Analysis of Turbulence Dynamics using Unstable Periodic Flow
使用不稳定周期流精确分析湍流动力学
  • 批准号:
    17340118
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistics of stretching of fluid lines and surfaces, and turbulent mixing
流体线和表面的拉伸以及湍流混合的统计
  • 批准号:
    14540385
  • 财政年份:
    2002
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure and Dynamics of Turbulent Elementary Vortices
湍流基本涡的结构和动力学
  • 批准号:
    12125204
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Turbulent Elementary Votrices and New Development in Theory, Predicition, and control of Turbulence
湍流初等涡流及湍流理论、预测和控制的新进展
  • 批准号:
    12125101
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Theree-dimensional dynamical structure of turbulence vortices Visualization and dynamics
湍流涡旋三维动力学结构可视化与动力学
  • 批准号:
    11837022
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Mechanism of MHD dynamo-Toward Understanding of Geodynamo-
MHD发电机机理研究-了解地球发电机-
  • 批准号:
    07640532
  • 财政年份:
    1995
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Law and Energy Transfer Mechanism in Turbulence
湍流中的统计规律与能量传递机制
  • 批准号:
    03452053
  • 财政年份:
    1991
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Regulation of Metal Complexes by Ligands
配体对金属配合物的调节
  • 批准号:
    63470041
  • 财政年份:
    1988
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

High-Accuracy Numerical Simulation of Pathological Vocal Fold Vibrations Considering Individual Differences
考虑个体差异的病理性声带振动的高精度数值模拟
  • 批准号:
    23K17195
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acceleration of High-Fidelity Numerical Simulation for Unsteady Flows with Low Reduced Frequency
低降频非定常流高保真数值模拟加速
  • 批准号:
    23KJ0528
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Versatile Strength Evaluation of CFRP Based on an Automated Data-Driven Numerical Simulation Platform
基于自动化数据驱动数值模拟平台的 CFRP 多功能强度评估
  • 批准号:
    23K16891
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A study on numerical simulation of turbulent combustion inside the combustor of an aircraft engine
航空发动机燃烧室内湍流燃烧数值模拟研究
  • 批准号:
    23KJ0035
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Unraveling the progenitors of Type Ia supernova remnants through combining high resolution X-ray spectroscopy and numerical simulation
通过结合高分辨率 X 射线光谱和数值模拟来解开 Ia 型超新星遗迹的前身
  • 批准号:
    22KJ1047
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An observational and numerical simulation study of plasma instability related with substorm injections and ULF wave excitation
与亚暴注入和 ULF 波激发相关的等离子体不稳定性的观测和数值模拟研究
  • 批准号:
    22KJ0532
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Constraining electrification in volcanic plumes through numerical simulation (FlAshPlume)
通过数值模拟约束火山羽流中的带电 (FlAshPlume)
  • 批准号:
    NE/X011054/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Research Grant
Coupled analysis of measurement using 3D CT and numerical simulation for iron ore high temperature complex dynamic behavior
铁矿石高温复杂动态行为3D CT测量与数值模拟耦合分析
  • 批准号:
    23K17810
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study on the formation environment and thermal history of long period comets using numerical simulation and observation data obtained by spacecraft
利用数值模拟和航天器观测数据研究长周期彗星的形成环境和热历史
  • 批准号:
    22KJ0989
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了