NEW BOUNDARY ELEMENT METHOD FOR THERMOELASTIC PROBLEMS AND ITS APPLICATION TO SINGULAR STRESS FIELDS
热弹性问题的新边界元方法及其在奇异应力场中的应用
基本信息
- 批准号:61550077
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 1987
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ATTEMPT IS MADE TO ESTABLISH A NEW BOUNDARY ELEMENT APPROACH TO THERMOELASTIC PROBLEMS. FIRST, A NEW BOUNDARY ELEMENT METHOD IS PROPOSED FOR THE NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEMS WITH TEMPERATURE-DEPENDENT MATERIAL CONSTANTS.THE KIRCHHOFF TRANSFORMATION IS APPLIED TO THE THERMOELASTIC PROBLEMS TO PRODUCE A PSEUDO LINEAR DIFFERENTIAL EQUATION, AND THEN THE RESULTING INTEGRAL EQUATION IS SOLVED BY MEANS OF THE USUAL BOUNDARY ELEMENT METHOD. THE PROPOSED METHOD IS APPLIED TO A SERIES OF NONLINEAR TRANSIENT PROBLEMS WHEREBY THE POTENTIAL USEFULNESS OF THE METHOD IS DEMONSTRATED. SECOND, THE THERMAL STRESSES PRODUCED NEARTHE CRACK TIPS IN STEADY AND ALSO TRANSIENT HEAT CONDUCTION STATES ARE INVESTIGATED BY THE USUAL BOUNDARY ELEMENT METHOD IN WHICH THE TWO-STEP SOLUTION PROCEDURE IS EMPLOYED. THE RESULTS THUS OBTAINED FOR A NUMBER OF PRACTICAL PROBLEMS ARESUMMARIZED AS CHARTS USEFUL FOR DESIGN BASED ON FRACTURE MECHANICS.FINALLY, A NEW BOUNDARY ELEMENT METHOD IS PROPOSED FOR BOTH THE COUPLED AND UNCOUPLED THERMOELASTIC PROBLEMS. THE NEW METHOD EMPLOYS HOERMANDER'S PROCEDURE TO DERIVE THE FUNDAMENTAL SOLUTIONS NEEDED FOR THE INTEGRAL EQUATION FORMULATION OF THE PROBLEMS. A SET OF BOUNDARY INTEGRAL EQUATIONS ARE OBTAINED AND DISCRETIZED BY MEANS OF THE USUAL BOUNDARY ELEMENT METHOD. IN THIS STUDY, THEORETICAL ASPECTS OF THE NEW APPROACH ARE FIRST INVESTIGATED. THEN, A BOUNDARY ELEMENT SOFTWARE IS DEVELOPED FOR THERMAL STRESS ANALYSIS IN STEADY STATE HEAT CONDUCTION. HOWEVER, FURTHER DEVELOPMENT OF THE NEW APPROACH IS STILL OPEN TO FULLY COUPLED THERMOELASTIC PROBLEMS, WHICH CAN BE RECOMMENDED AS THE FUTURE RESEARCH WORK OF THIS PROJECT.
尝试建立一种求解热弹性体问题的新边界元方法。首先,本文提出了一种新的边界元方法,用于求解具有温度变材料常数的非线性暂态热传导问题,将Kirchhoff变换应用于热弹性问题,得到一个伪线性微分方程组,然后用通常的边界元方法求解得到的积分方程组。将该方法应用于一系列非线性暂态问题,验证了该方法的有效性。其次,用常规的边界元方法分析了稳态和暂态热传导状态下裂纹尖端产生的热应力,并采用两步法求解。文中给出了一些实际问题的计算结果,为基于断裂力学的设计提供了有用的图表。最后,对耦合和非耦合热弹性问题提出了一种新的边界元方法。新方法利用HERMANDER方法推导出问题的积分方程式所需的基本解。得到了一组边界积分方程组,并用通常的边界元方法进行了离散。在这项研究中,首先对新方法的理论方面进行了研究。在此基础上,开发了稳态热传导热应力分析的边界元软件。然而,新方法的进一步发展对于完全耦合的热弹性问题仍然是开放的,这可以作为本项目未来的研究工作。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
田中正隆: "境界要素法の応用" (株)コロナ社, 260 (1987)
田中正孝:《边界元法的应用》Coronasha Co., Ltd.,260(1987)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
MASASHI KIKUTA: "A BOUNDARY ELEMENT METHOD FOR NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEMS" BOUNDARY ELEMENTS VIII, ED. BY M. TANAKA AND C.A. BREBBIA, SPRINGER-VERLAG. 47-58 (1986)
MASASHI KIKUTA:“非线性瞬态热传导问题的边界元方法”边界元 VIII,ED。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
MASASHI KIKUTA: "BOUNDARY ELEMENT ANALYSIS OF NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEMS" COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. 62. 321-329 (1987)
MASASHI KIKUTA:“非线性瞬态热传导问题的边界元分析”应用力学和工程中的计算机方法。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Masataka其他文献
Mediation between the Secular and the Religious : A Local Radio Program in Benin and the Post-Secular Argument
世俗与宗教之间的调解:贝宁当地广播节目和后世俗争论
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
青山和夫;米延仁志;坂井正人;鈴木紀;TANAKA Masataka - 通讯作者:
TANAKA Masataka
細川幽斎の明石岡詠 : 『衆妙集』六四五番歌をめぐって
细川佑斋的《明冈瑛》:关于《修明集》第 645 首诗
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
大和田俊之;鈴木遥;岩﨑葉子;楊海英;Yuichi Sendai,(Yusuke Murakami y Enrique Peruzzotti(eds.));TANAKA Masataka;中村健史 - 通讯作者:
中村健史
都市中小河川朝霧川の災害リスクと水害対策―神戸学院大学有瀬キャンパス内の洪水調整池の貯留と廃止溜池の増水から考える―
城市中小型河流朝雾川的灾害风险与洪水对策 - 从神户学院大学 Arise 校区防洪池蓄水和废弃水库蓄水量增加的角度思考 -
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
永冨真梨;忠聡太;日高良祐編著;相澤伸広;楊海英;TANAKA Masataka;幡谷則子;ウォマック,イターシャ・L.(押野素子訳);相澤伸広;中村健史;楊海英;坂下史子;TANAKA Masataka;楊海英;坂下史子;相澤伸広;大和田 俊之;坂下史子;田中正隆;矢嶋巌 - 通讯作者:
矢嶋巌
不満の場のゆくえ ―ベナンにおける「意見する人」の語りとデモクラシー
不满领域的未来:“意见主义者”与贝宁民主的叙述
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
青山和夫;米延仁志;坂井正人;鈴木紀;TANAKA Masataka;田中正隆 - 通讯作者:
田中正隆
Thirty Years after the Democratic Transition in Benin, West Africa: The Case of Public Opinion in Radio Call-in Shows
西非贝宁民主转型三十年后:广播热线节目中的民意案例
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
青山和夫;米延仁志;坂井正人;鈴木紀;TANAKA Masataka;田中正隆;田中正隆;TANAKA Masataka - 通讯作者:
TANAKA Masataka
TANAKA Masataka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Masataka', 18)}}的其他基金
Journalist, Audience and their Life Strategy in West Africa After Democratic Transition:Toward an Anthropological Study of the Field of Media.
西非民主转型后的记者、观众及其生活策略:媒体领域的人类学研究。
- 批准号:
22520829 - 财政年份:2010
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HIGHER NUMERICAL EFFICIENCY AND ACCURACY THROUGH MESHLESS EVALUATION OF DOMAIN INTEGRALS
通过域积分的无网格评估提高数值效率和准确性
- 批准号:
13650080 - 财政年份:2001
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accurate boundary element analysis of plate-structures including rib-stiffened components and its applications
含加强筋板结构精确边界元分析及其应用
- 批准号:
11650082 - 财政年份:1999
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEVELOPMENT OF NEW NDT SYSTEMS BASED ON KALMAN-FILTER BOUNDARY ELEMENT METHOD
基于卡尔曼滤波器边界元法的新型无损检测系统开发
- 批准号:
06555028 - 财政年份:1994
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
相似海外基金
A new boundary element method for free surface flows
一种新的自由表面流边界元方法
- 批准号:
573089-2022 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
University Undergraduate Student Research Awards
Boundary element method for domains whose Green's function is not available
格林函数不可用域的边界元法
- 批准号:
21K19764 - 财政年份:2021
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Postgraduate Scholarships - Doctoral
A study on a space-time boundary element method for the wave equation
波动方程时空边界元法研究
- 批准号:
20K11849 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coupling of fictitious domain methods and the boundary element method for the analysis of acoustic metamaterials
虚拟域方法与边界元方法耦合用于声学超材料分析
- 批准号:
423317638 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Research Grants
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Postgraduate Scholarships - Doctoral
Virtual Experiments and Design of Particulate Composites with the Inclusion-based Boundary Element Method (iBEM)
使用基于夹杂物的边界元法 (iBEM) 进行颗粒复合材料的虚拟实验和设计
- 批准号:
1762891 - 财政年份:2018
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
Reliability Based Analysis with the Boundary Element Method
使用边界元法进行基于可靠性的分析
- 批准号:
1817399 - 财政年份:2016
- 资助金额:
$ 1.22万 - 项目类别:
Studentship
Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
- 批准号:
4978-2010 - 财政年份:2015
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Grants Program - Individual
Fast direct solvers for the boundary element method in 3D and their applications to optimal design problems
3D 边界元法的快速直接求解器及其在优化设计问题中的应用
- 批准号:
26870269 - 财政年份:2014
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)