Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
基本信息
- 批准号:4978-2010
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main objective of this research is to develop efficient techniques using the Boundary Element Method (BEM) for three-dimensional (3D) stress analysis of anisotropic solids under thermo-mechanical loads. These materials which have properties that vary with orientation are increasing being used in engineering and scientific applications. Although the BEM is very well established as an efficient tool for treating isotropic elastic solids, the same cannot be said for the case of 3D anisotropy. This is due to the mathematical complexity of the Green's functions that were used in the boundary integral equation (BIE). There is also paucity of publications indeed dealing with 3D BEM anisotropic thermal stress analysis. In the basic form of the BIE, thermal effects manifest themselves with the Green's functions in an additional volume integral which has to be transformed into surface ones to restore the distinctive feature of the BEM as a boundary solution technique. To this end, simplifying approximations have been adopted in the schemes reported in the few available publications; cases where cracks or internal corners are present need to be treated differently. As an advance in the development of the BEM in this area, the applicant and his co-workers have recently implemented an approach based on an exact, explicit, algebraic form of the Green's functions. They can be implemented and computed in a relatively efficient manner compared to previous formulations. The proposed research aims to extend it to handle thermal effects. Because of the algebraic form, the associated volume integral containing these Green's functions and the temperature terms can, in principle, be transformed exactly into surface ones. The BEM formulation for thermoelasticity can thus be applied to both crack and non-crack problems with the same algorithm without further approximations. Once this has been accomplished, the two-parameter approach for fracture mechanics analysis of cracked anisotropic solids under thermal loads will be implemented. Some important non-crack and crack problems of practical interest will be investigated.
本研究的主要目的是开发有效的技术,使用边界元法(BEM)的三维(3D)应力分析的各向异性固体热机械载荷下。 这些具有随取向而变化的性质的材料越来越多地用于工程和科学应用中。虽然边界元法是一种有效的处理各向同性弹性固体的工具,但对于三维各向异性的情况却不能这样说。这是由于在边界积分方程(BIE)中使用的绿色函数的数学复杂性。也有很少的出版物确实处理三维边界元各向异性热应力分析。在基本形式的BIE,热效应表现出自己的绿色的功能,在一个额外的体积积分,必须转化为表面的恢复边界元法作为一个边界解决方案技术的显着特点。为此,简化近似已被通过在几个可用的出版物中报告的计划,裂纹或内角的情况下,目前需要区别对待。作为该领域中BEM发展的一个进步,申请人及其同事最近实施了一种基于绿色函数的精确、显式、代数形式的方法。 与以前的公式相比,它们可以以相对有效的方式实现和计算。拟议的研究旨在将其扩展到处理热效应。由于代数形式,包含这些绿色函数和温度项的相关体积积分原则上可以精确地转化为表面积分。因此,热弹性力学的边界元公式可以应用于裂纹和非裂纹问题,具有相同的算法,而无需进一步的近似。一旦这已经完成,双参数方法的断裂力学分析的各向异性固体在热负荷下将被实施。一些重要的非裂纹和裂纹问题的实际利益将被调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tan, Choonlai其他文献
Tan, Choonlai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tan, Choonlai', 18)}}的其他基金
Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
- 批准号:
4978-2010 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
- 批准号:
4978-2010 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
- 批准号:
4978-2010 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element fracture mechanics analysis of anisotropic bodies
各向异性体的边界元断裂力学分析
- 批准号:
4978-2004 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element fracture mechanics analysis of anisotropic bodies
各向异性体的边界元断裂力学分析
- 批准号:
4978-2004 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element fracture mechanics analysis of anisotropic bodies
各向异性体的边界元断裂力学分析
- 批准号:
4978-2004 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element fracture mechanics analysis of anisotropic bodies
各向异性体的边界元断裂力学分析
- 批准号:
4978-2004 - 财政年份:2005
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element fracture mechanics analysis of anisotropic bodies
各向异性体的边界元断裂力学分析
- 批准号:
4978-2004 - 财政年份:2004
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element analysis of adhesively patched composite structures
粘接复合材料结构的边界元分析
- 批准号:
4978-2000 - 财政年份:2003
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boundary element analysis of adhesively patched composite structures
粘接复合材料结构的边界元分析
- 批准号:
4978-2000 - 财政年份:2002
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
- 批准号:
DP240100961 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Projects