A coarse-grained^M modelling approach for applications in Metabolic Engineering

用于代谢工程应用的粗粒度^M建模方法

基本信息

项目摘要

To improve biotechnological processes, mathematical models come into play for a better understanding of the inner workings of cells. Although various modelling approaches are available and a high number of models are published, the demand for a quantitative and a dynamic description of cellular processes is still high and not met by all approaches. Also, quantitative data is now available for different cellular levels like proteome, transcriptome, and metabolome that should be integrated into these models. The proposal's overall aim is to develop coarse-grainedM, that is, a framework for dynamic coarse-grained models with a modular structure in a very general form, such that applications to different cellular systems and process designs can be made quickly. Modularity in the context of the proposal means that, starting from a simple structure of a coarse-grained model, functional modules are defined that specify parts of the overall network depending on the problem formulation. To set up these models, a combined approach with modelling based on first principles and a data driven approach with classical elements of machine learning tools will be used. Applications in Metabolic Engineering are addressed such as by-product formation, and heterologous protein production. In addition, also defined mixed cultures are considered where two strain variants are mutual linked for an efficient production of an interesting product.
为了改进生物技术过程,数学模型开始发挥作用,以便更好地理解细胞的内部运作。尽管有各种各样的建模方法,并且发表了大量的模型,但对细胞过程的定量和动态描述的需求仍然很高,并不是所有方法都能满足的。此外,现在可以获得不同细胞水平的定量数据,如蛋白质组、转录组和代谢组,这些数据应该集成到这些模型中。该提案的总体目标是开发粗粒度模型,也就是说,一个具有非常通用形式的模块化结构的动态粗粒度模型框架,这样就可以快速地将应用程序应用于不同的细胞系统和过程设计。提案上下文中的模块化意味着,从粗粒度模型的简单结构开始,定义功能模块,这些模块根据问题表述指定整个网络的各个部分。为了建立这些模型,将使用基于第一原理的建模方法和具有机器学习工具经典元素的数据驱动方法相结合的方法。在代谢工程中的应用,如副产物的形成,异源蛋白的生产。此外,还考虑了混合培养,其中两种菌株变体相互联系,以有效地生产有趣的产品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Andreas Kremling其他文献

Professor Dr.-Ing. Andreas Kremling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Andreas Kremling', 18)}}的其他基金

Dissection of the cellular processes during heterologous protein production in Pseudomomas putida – or how much is a protein?
恶臭假单胞菌异源蛋白质生产过程中细胞过程的剖析 â 或蛋白质有多少?
  • 批准号:
    406709163
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cell-cell interaction in a synthetic co-culture: PHA production from sunlight and CO2 co-cultivating Synechococcus elongatus and Pseudomonas putida
合成共培养中的细胞间相互作用:利用阳光和 CO2 共培养细长聚球藻和恶臭假单胞菌生产 PHA
  • 批准号:
    427887573
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
  • 批准号:
    10107090
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
  • 批准号:
    2327480
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stronger, coarser-grained biodegradable zinc alloys
强度更高、颗粒更粗的可生物降解锌合金
  • 批准号:
    DP240102498
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
  • 批准号:
    2337901
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Coarse-Grained Modelling of DNA-Protein Interactions
DNA-蛋白质相互作用的粗粒度建模
  • 批准号:
    2888934
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
  • 批准号:
    2316666
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
  • 批准号:
    2303626
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
  • 批准号:
    2225337
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了