Asymptotic Behavior and Periodisity of Solutions of Differdntial Equations
微分方程解的渐近行为和周期性
基本信息
- 批准号:63540119
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1988
- 资助国家:日本
- 起止时间:1988 至 1990
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stability therorems obtained in articles by Murakami-Yamamoto [3] [13], Wada-Yamamoto [4] [11], Saito-Yamamoto [6] [10], and Ohe-yamamoto [7] [15] are extensitions of many results.Oscillation theorems for second order nonlinear differential equations by Nagabuchi-Yamamoto [2] are extensions of those obtained by yan in 1986.On the existence of periodic solutions of nonlinear systems are considered in Saito-Yamamoto [5] and Sugie-Yamamoto [14] and had new results.Uniqueness theorems of periodic solutions of Lineard equations are proved in Hirano-Yamamoto [1] [12].Existence theorems of solutions for quasilinear systems are proved in Saito-Yamamoto [8] [9].Continuous dependence of periodic solutions for periodic systems are discussed in Saito-Yamamoto [16] and obtained extensions of the theorems due to Cronin, Hale and Mawhin respectively.All results above are extensions of those obtained by many authors. Throughout the above articles, it can be considered that almost all of our purpose had been achieved.
Murakami-Yamamoto [3] [13]、Wada-Yamamoto [4] [11]、Saito-Yamamoto [6] [10] 和 Ohe-yamamoto [7] [15] 文章中获得的稳定性定理是许多结果的扩展。 Nagabuchi-Yamamoto [2] 的二阶非线性微分方程的振荡定理是这些定理的扩展 yan 于 1986 年获得。 Saito-Yamamoto [5] 和 Sugie-Yamamoto [14] 考虑了非线性系统周期解的存在性,并得到了新的结果。 Hirano-Yamamoto [1] [12] 证明了 Lineard 方程周期解的唯一性定理。 拟线性系统解的存在性定理在 Saito-Yamamoto [8] [9]。Saito-Yamamoto [16] 讨论了周期系统周期解的连续相关性,并分别得到了 Cronin、Hale 和 Mawhin 定理的扩展。以上所有结果都是许多作者获得的结果的扩展。通过上面的文章,可以认为我们的目的几乎已经达到了。
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hirano,Masaki;Yamamoto,Minoru: "The Uniqueness of Periodic Solutions of Lienard Equations in Some Domains Including the Origin" Proceedoigs of Japan Acadey. 64. 231-234 (1988)
平野正树;山本稔:《李纳德方程周期解在某些领域的唯一性,包括起源》日本学园论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Saito,Seiji;Yamamoto,Minoru: "Periodic Solutions for the Periodic Quasilinear Ordinary Differential System" Mathematical Japonica. 34. 111-121 (1989)
Saito,Seiji;Yamamoto,Minoru:“周期拟线性常微分系统的周期解”Mathematica Japonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Wada,Teruyo;Yamamoto,Minoru: "Asymptotic Stability Theorems for a Nonlinear Second Order Differenrial Equation" Mathematical Japonica. 34. 319-331 (1989)
Wada,Teruyo;Yamamoto,Minoru:“非线性二阶微分方程的渐近稳定性定理”数学日本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Maruo,Kenji: "On the Existence of Solutions for Hyperbolic Equation with Subdifferential Operators Depending on Times" to appear.
Maruo、Kenji:“论含次微分算子的双曲方程解的存在性”出现。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hirano, Masaki & Yamamoto, Minoru: "The Uniqueness of Periodic Solutions of Lienard Equations in Some Domains Including the Origin" Math. Japon.Vol. 34, No. 5. 737-746 (1989)
平野正树
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAMOTO Minoru其他文献
YAMAMOTO Minoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAMOTO Minoru', 18)}}的其他基金
Study of factorization of stable map using lift, extension and extension-lift
利用升力、可拓和可拓-升力对稳定图进行因式分解的研究
- 批准号:
21740058 - 财政年份:2009
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Basic Study on Thermo-Elasto-Plastic Mixed Hydrodynamic Lubrication Problems
热弹塑性混合流体动力润滑问题的基础研究
- 批准号:
02452111 - 财政年份:1990
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234522 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234523 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234524 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
- 批准号:
2330970 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
- 批准号:
2338345 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
- 批准号:
23K25777 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
- 批准号:
NE/Y001249/1 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant














{{item.name}}会员




