Functional Analysis and its Applications
泛函分析及其应用
基本信息
- 批准号:02640115
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1991
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project consists in researching various branches of mathematical analysis by applying methods of functional analysis. Main results obtained are as follows. [l]concerns with the structure of relations between equations arising in fluid dynamics and kinetic theory of gases. We have proved that the solution of the Boltzmann equation converges to the solution of compressible Euler equation as the mean free path tends to 0. Moreover, we have proved that the solution of compressible Euler equation converges to that of the incompressible Euler equation as the Mach number tends to 0 and that the solution of the Vlasov-Maxwell equation converges to that of the Vlasov-Poisson equation as the ratio, fluid verocity/ light verocity, tends to 0. With respect to the research on the representation theory of the Lie groups, in[2][3][4][5]we have investigated the structure of the highest weight representation of Lie superalgebras and obtained interesting representations similar to the discrete series representations of Lie groups, and a decomposition of a super dual pair has been obtained in a special case. In[6]we have described the maps, embedding any representations of the semi-simple Lie group to the principal series representations, by using the 'orbit structure on the flag Manifolds, and have given symbolic diagrams of orbit structures on the flag manifolds in the case of the classical simple Lie groups. We have given an invited Section Lecture on these themes(the Section 7 : Lie Groups and Representations)in the International Congress of Mathematicians held in Kyoto 1990[7].
该项目的目的是通过应用泛函分析方法研究数学分析的各个分支。主要结果如下。[1]涉及流体动力学和气体动力学理论中产生的方程之间的关系结构。证明了当平均自由程趋于0时,玻尔兹曼方程的解收敛于可压缩欧拉方程的解。证明了当马赫数趋于0时,可压缩Euler方程的解收敛于不可压缩Euler方程的解;当流体速度/光速之比趋于0时,Vlasov-Maxwell方程的解收敛于Vlasov-Poisson方程的解。关于李群表示理论的研究,在[2][3][4][5]中,我们研究了李超代数的最高权表示的结构,得到了类似于李群的离散级数表示的有趣表示,并在特殊情况下得到了超对偶对的分解.在[6]中,我们利用旗流形上的轨道结构描述了将半单李群的任何表示嵌入到主级数表示中的映射,并给出了经典单李群情形下旗流形上轨道结构的符号图。我们在1990年京都举行的国际数学家大会上就这些主题做了一次特邀讲座(第7节:李群和表示)。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
西山 享: "Decomposing oscillator representations of a super dual pair osp(2/1;R)×so(n)"
Toru Nishiyama:“分解超级对偶对 osp(2/1;R)×so(n) 的振荡器表示”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西山 享: "Chara cters and seper characters of discrete series representations for orthosymplectic Lie super algebras" J.Algebra.141. 399-419 (1991)
Toru Nishiyama:“正交李超代数的离散级数表示的特征和单独特征”J.Algebra.141(1991)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西山 享: "Classification of su(P.g/n)" Comm.in Math.Phys.141. 475-502 (1991)
Takashi Nishiyama:“su(P.g/n) 的分类”Comm.in Math.Phys.141 (1991)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
松木 敏彦: "Orbits on Flog Manifolds" Proc.ICM Kyoto 1990. 807-813 (1991)
Toshihiko Matsuki:“Flog Manifolds 上的轨道”Proc.ICM 京都 1990. 807-813 (1991)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西山 享: "Characters and super characters of discrete seris representatois for orthosympletic die super algebras" J.Algebra. 141. 399-419 (1991)
Toru Nishiyama:“正交超代数的离散系列表示的特征和超特征”J.Algebra。141. 399-419 (1991)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KASAHARA Koji其他文献
KASAHARA Koji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KASAHARA Koji', 18)}}的其他基金
Nobel regulatory mechanism for transcription of genes encoding ribosomal components in S. cerevisiae
诺贝尔奖对酿酒酵母核糖体成分编码基因转录的调控机制
- 批准号:
23570215 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanism of transcriptional regulation of ribosomal protein genes in budding yeast
芽殖酵母核糖体蛋白基因转录调控的分子机制
- 批准号:
21770189 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Validation of 3D semi-geostrophic equation as the vanishing Froude/Rossby number limit of the 3D Euler equation, in the class of smooth solutions
在光滑解类中验证 3D 半地转方程作为 3D 欧拉方程的消失 Froude/Rossby 数极限
- 批准号:
1802758 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Unified understanding of relation between m-point singular solutions in Euler equation in a point-vortex system and vortex crystals composed of electron plasma strings
点涡系统欧拉方程m点奇异解与电子等离子体串组成的涡晶体关系的统一认识
- 批准号:
26800202 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Multi-marginal optimal transport and the incompressible Euler equation
多边际最优输运与不可压缩欧拉方程
- 批准号:
466750-2014 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
University Undergraduate Student Research Awards
Dynamic Switching Regression Models of the Euler Equation: Estimation by the Method of Simulated Scores
欧拉方程的动态切换回归模型:模拟分数法估计
- 批准号:
9000200 - 财政年份:1990
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant














{{item.name}}会员




