Existence and Deformation of Geometric Stuctures on Manifolds
流形上几何结构的存在与变形
基本信息
- 批准号:03640079
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I.Lorentz Structure. We have sutdied Lorentz manifolds of constant curvature which admit causal Killing vector fielda. We relate Lorentz causal character of Killing vector fields to Lorentz 3-manifolds of constant curvature to obtain the following.Theorem A.(a) There exists no compacat Lorentz 3-manifold of constant positive curvature which admits a spacelike Killing vector field or a lightlike Killing vector field.(b) If a compact Lorentz flat 3-manifold admits a lighlike Killing vector field then it is an infranilmanifold.(c) If a compact Lorentz flat 3-manifold admits a spacelike Killing vector field and is not a euclidean space form, then it is an infrasolvmanifold but not an infranilmanifold.(d) A compact Lorentz 3-manifold of constant negative curvature admitting a timelike Killing vector field is a stnadard space form.(e) There exists no lightlike Killing vector field on a compact Lorentz 3-manifold of constant negative curvature.(f) If a compact Lorentz hyperbolic 3-manifold M … More admits a spacelike Killing vector field and the developing map is injective, then M is geodesically complete and a finite covering of M is either a homogeneous standard space form or a nonstandard space form.II.Standard Pseudo-Hermitian Structure. We have found a curvaturelike function LAMBDA on a strictly pseudoconvex pseudo-Hermitian manifold in order to study topological and geometric properties of those manifolds which admit characteristic CR vector fields. It is well known that a conformally flat manifold contains a class of Riemannian manifolds of constant curvature. In contrast, we proved that aspherical CR manifold contains a class of standard pseudo-Hermitian manifolds of constant curvature LAMBDA.Moreover we shall classify those compact manifolds. We construct a model space (*, X) of standard pseudo-Hermitian structure of constant curvature LAMBDA.Here * is a finite dimensional Lie group and X is a homogeneous space from *. Then X is a connected simly connected complete standard pseudo-Hermitian manifold of constant LAMBDA and * is an (n+1)^2-dimensional Liegroup consisting of pseudo-Hermitian transformations of X onto itself. Then we have shown the following uniformization.Theorem B.Let M be a standard pseudo-Hermitian manifold of constant LAMBDA.Then M can be uniformized over X with respect to *. In addition, if M is compact, then(i) LAMBDA is a positive constant if and only if M is isomorphic to the spherical space form S^<2n+1>/F where F * U(n+1).(ii) LAMBDA=0 if and only if M is isomorphic to a Heisenberg infranilmanifold N/GAMMA, where GAMMA * N * U(n).(iii) LAMBDA is a negative constant if and only if M is isomorphic to a Lorentz stnadard space form H^^-^<, 2n>/GAMMA^^- (a complete Lorentz manifold of constant negative curvature), where GAMMA^^- * U^^-(n, 1).III.Deformation of CR-structures, Conformal structures. There is the natural homomorphism psi : Diff(S^1, M) -> Out(GAMMA). Note that Ker psi contains the subgroup Diff^0(S^1, M). Put G=Ker psi/Diff^0(S^1, M). We have obtained the following deformation.Theorem C.Let M be a closed S^1-invariant spherical CR-manifold of dimension 2n+1(resp.a closed S^1-invariant conformally flat n-manifold). Suppose that S^1 acts semifreely on M such that orbit space M^<**> is a Kahler-Kleinian orbifold D^<2n>-LAMBDA/GAMMA^<**> with nonempty boundary (resp.a Kleinian orbifold D^<n-1>-LAMBDA/GAMMA^* with nonempty boundary) and with H^2(GAMMA^<**> ; Z)=0. If pi_1(M) is not virtually solvable, then(1) hol : SCR(U(1), M) -> R(GAMMA^<**>, PU(n, 1))/PU(n, 1) X T^k is a covering map whose fiber is isomorphic to G.(2) hol : CO(SO(2), M) -> R(GAMMA^<**>, SO(n-1,1)^0/SO(n-1,1)^0 X T^k is a covering map whose fiber is isomorphic to G. Less
一、洛伦兹结构本文研究了常曲率Lorentz流形中的因果Killing向量场。我们将Killing向量场的Lorentz因果特征与常曲率的Lorentz三维流形联系起来,得到如下定理A。(a)在具有常正曲率的Lorentz 3-流形上不存在允许类空Killing向量场或类光Killing向量场的流形。(b)如果紧致Lorentz平坦3-流形存在类光Killing向量场,则它是一个infranilmanifold。(c)如果紧致Lorentz平坦3-流形存在类空Killing向量场且不是欧氏空间形式,则它是下解流形而不是下流形。(d)具有常负曲率的紧致Lorentz三维流形是一种标准空间形式,它允许类时Killing向量场存在。(e)在常负曲率的紧致Lorentz三维流形上不存在类光Killing向量场。(f)如果紧Lorentz双曲三维流形M ...更多信息 若M是测地线完备的,且M的有限覆盖是齐次标准空间形式或非标准空间形式,则M是测地线完备的.II.标准伪厄米特结构.为了研究具有特征CR向量场的流形的拓扑和几何性质,我们在严格伪凸伪Hermitian流形上找到了一个类曲率函数LAMBDA.众所周知,共形平坦流形包含一类常曲率黎曼流形。与此相反,我们证明了非球面CR流形包含一类常曲率LAMBDA的标准伪厄米流形,并对这些紧致流形进行了分类。构造了一个具有常曲率LAMBDA的标准伪厄米特结构的模型空间(*,X),这里 * 是有限维李群,X是由 * 构成的齐次空间.则X是一个连通的、简单连通的、完备的、具有常数LAMBDA的标准伪厄米特流形,* 是一个由X到自身的伪厄米特变换构成的(n+1)^2维李群。定理B.设M是一个标准的具有常数LAMBDA的伪厄米特流形,则M可以关于 * 在X上一致化。此外,如果M是紧的,则(i)LAMBDA是正常数当且仅当M同构于球面空间形式S^<2n+1>/F,其中F * U(n+1)。(ii)LAMBDA=0当且仅当M同构于一个Heisenberg infranilmanifold N/<$MA,其中<$MA * N * U(n)。(iii)LAMBDA是一个负常数当且仅当M同构于一个Lorentz标准空间形式H^^-U ^^(n,1),其中Gamma^^-U^^-(n,1)。III. CR-结构的变形,共形结构。存在自然同态psi:Diff(S^1,M)-> Out(Gamma)。注意Ker psi包含子群Diff^0(S^1,M)。设G=Ker psi/Diff^0(S^1,M)。定理C.设M是2n+1维的闭S^1不变球面CR-流形(或闭S^1不变共形平坦n-流形)。设S^1半自由地作用在M上,使得轨道空间M^<**>是一个具有非空边界的Kahler-Kleinian orbifold D^<2n>-LAMBDA/Gamma^<**>(相应地,是一个具有非空边界的Kleinian orbifold D^<n-1>-LAMBDA/Gamma^*),且H ^2(Gamma^<**> ; Z)=0。若pi_1(M)不是虚可解的,则(1)hol:SCR(U(1),M)-> R(<$**>,PU(n,1))/PU(n,1)XT ^k是一个覆盖映射,其纤维同构于G. (2)H:CO(SO(2),M)-> R(Gamma^**>,SO(n-1,1)^0/SO(n-1,1)^0 × T^k是一个覆盖映射,其纤维同构于G。少
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Kamishima: "On the 3-dimensional pseudo-Hermitian space forms and other geometric strutures, (to appear in Kumamoto Math.Journal)" (1994)
Y.Kamishima:“关于 3 维伪厄米空间形式和其他几何结构,(出现在 Kumamoto Math.Journal)”(1994 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
神島 芳宣: "Deformation spaces on geometric structures" Advanced studies in Pure math.Aspects of Low Dimensional Manifolds. 20. 263-299 (1992)
Yoshinobu Kamishima:“几何结构上的变形空间”纯数学高级研究。低维流形方面20。263-299(1992)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
神島 芳宣: "Lorents structures and Killing vector fielth on manifolds" Droceendings of Worshops in Pure Muth. 10. 75-85 (1990)
Yoshinobu Kamishima:“流形上的洛伦兹结构和杀伤矢量场”Droceendings of Worshops in Pure Muth。 10. 75-85 (1990)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Kamishima(with T.Tsuboi): "CR-structures on Seifert manifolds" Invent.Math.104. 149-163 (1991)
Y.Kamishima(与 T.Tsuboi):“Seifert 流形上的 CR 结构”Invent.Math.104。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
神島芳宣: "Standard Pseudo-Hermitian Structure and Seifert fibration on CR manifolds" Annals of golbal Analysis and Geometry. 4,(発表予定). 〓〓-〓〓 (1994)
Yoshinobu Kamishima:“CR 流形上的标准伪埃尔米特结构和 Seifert 纤维化”,《全球分析与几何年鉴》4,(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAMISHIAM Yoshinobu其他文献
KAMISHIAM Yoshinobu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
- 批准号:
DP220102232 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Projects
Geometric structure of integrable dynamical systems
可积动力系统的几何结构
- 批准号:
22K03383 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Grants Program - Individual
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10445980 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10798457 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10701682 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Geometric structure of mind-body synchronization created by interpersonal movement
人际运动创造的身心同步的几何结构
- 批准号:
22K19727 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Learning and Analysing Discrete Geometric Structure in Statistical Models
学习和分析统计模型中的离散几何结构
- 批准号:
2602130 - 财政年份:2021
- 资助金额:
$ 1.22万 - 项目类别:
Studentship
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2021
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Grants Program - Individual