Existence and Deformation of Geometric Stuctures on Manifolds

流形上几何结构的存在与变形

基本信息

项目摘要

I.Lorentz Structure. We have sutdied Lorentz manifolds of constant curvature which admit causal Killing vector fielda. We relate Lorentz causal character of Killing vector fields to Lorentz 3-manifolds of constant curvature to obtain the following.Theorem A.(a) There exists no compacat Lorentz 3-manifold of constant positive curvature which admits a spacelike Killing vector field or a lightlike Killing vector field.(b) If a compact Lorentz flat 3-manifold admits a lighlike Killing vector field then it is an infranilmanifold.(c) If a compact Lorentz flat 3-manifold admits a spacelike Killing vector field and is not a euclidean space form, then it is an infrasolvmanifold but not an infranilmanifold.(d) A compact Lorentz 3-manifold of constant negative curvature admitting a timelike Killing vector field is a stnadard space form.(e) There exists no lightlike Killing vector field on a compact Lorentz 3-manifold of constant negative curvature.(f) If a compact Lorentz hyperbolic 3-manifold M … More admits a spacelike Killing vector field and the developing map is injective, then M is geodesically complete and a finite covering of M is either a homogeneous standard space form or a nonstandard space form.II.Standard Pseudo-Hermitian Structure. We have found a curvaturelike function LAMBDA on a strictly pseudoconvex pseudo-Hermitian manifold in order to study topological and geometric properties of those manifolds which admit characteristic CR vector fields. It is well known that a conformally flat manifold contains a class of Riemannian manifolds of constant curvature. In contrast, we proved that aspherical CR manifold contains a class of standard pseudo-Hermitian manifolds of constant curvature LAMBDA.Moreover we shall classify those compact manifolds. We construct a model space (*, X) of standard pseudo-Hermitian structure of constant curvature LAMBDA.Here * is a finite dimensional Lie group and X is a homogeneous space from *. Then X is a connected simly connected complete standard pseudo-Hermitian manifold of constant LAMBDA and * is an (n+1)^2-dimensional Liegroup consisting of pseudo-Hermitian transformations of X onto itself. Then we have shown the following uniformization.Theorem B.Let M be a standard pseudo-Hermitian manifold of constant LAMBDA.Then M can be uniformized over X with respect to *. In addition, if M is compact, then(i) LAMBDA is a positive constant if and only if M is isomorphic to the spherical space form S^<2n+1>/F where F * U(n+1).(ii) LAMBDA=0 if and only if M is isomorphic to a Heisenberg infranilmanifold N/GAMMA, where GAMMA * N * U(n).(iii) LAMBDA is a negative constant if and only if M is isomorphic to a Lorentz stnadard space form H^^-^<, 2n>/GAMMA^^- (a complete Lorentz manifold of constant negative curvature), where GAMMA^^- * U^^-(n, 1).III.Deformation of CR-structures, Conformal structures. There is the natural homomorphism psi : Diff(S^1, M) -> Out(GAMMA). Note that Ker psi contains the subgroup Diff^0(S^1, M). Put G=Ker psi/Diff^0(S^1, M). We have obtained the following deformation.Theorem C.Let M be a closed S^1-invariant spherical CR-manifold of dimension 2n+1(resp.a closed S^1-invariant conformally flat n-manifold). Suppose that S^1 acts semifreely on M such that orbit space M^<**> is a Kahler-Kleinian orbifold D^<2n>-LAMBDA/GAMMA^<**> with nonempty boundary (resp.a Kleinian orbifold D^<n-1>-LAMBDA/GAMMA^* with nonempty boundary) and with H^2(GAMMA^<**> ; Z)=0. If pi_1(M) is not virtually solvable, then(1) hol : SCR(U(1), M) -> R(GAMMA^<**>, PU(n, 1))/PU(n, 1) X T^k is a covering map whose fiber is isomorphic to G.(2) hol : CO(SO(2), M) -> R(GAMMA^<**>, SO(n-1,1)^0/SO(n-1,1)^0 X T^k is a covering map whose fiber is isomorphic to G. Less
一、洛伦兹结构本文研究了常曲率Lorentz流形中的因果Killing向量场。我们将Killing向量场的Lorentz因果特征与常曲率的Lorentz三维流形联系起来,得到如下定理A。(a)在具有常正曲率的Lorentz 3-流形上不存在允许类空Killing向量场或类光Killing向量场的流形。(b)如果紧致Lorentz平坦3-流形存在类光Killing向量场,则它是一个infranilmanifold。(c)如果紧致Lorentz平坦3-流形存在类空Killing向量场且不是欧氏空间形式,则它是下解流形而不是下流形。(d)具有常负曲率的紧致Lorentz三维流形是一种标准空间形式,它允许类时Killing向量场存在。(e)在常负曲率的紧致Lorentz三维流形上不存在类光Killing向量场。(f)如果紧Lorentz双曲三维流形M ...更多信息 若M是测地线完备的,且M的有限覆盖是齐次标准空间形式或非标准空间形式,则M是测地线完备的.II.标准伪厄米特结构.为了研究具有特征CR向量场的流形的拓扑和几何性质,我们在严格伪凸伪Hermitian流形上找到了一个类曲率函数LAMBDA.众所周知,共形平坦流形包含一类常曲率黎曼流形。与此相反,我们证明了非球面CR流形包含一类常曲率LAMBDA的标准伪厄米流形,并对这些紧致流形进行了分类。构造了一个具有常曲率LAMBDA的标准伪厄米特结构的模型空间(*,X),这里 * 是有限维李群,X是由 * 构成的齐次空间.则X是一个连通的、简单连通的、完备的、具有常数LAMBDA的标准伪厄米特流形,* 是一个由X到自身的伪厄米特变换构成的(n+1)^2维李群。定理B.设M是一个标准的具有常数LAMBDA的伪厄米特流形,则M可以关于 * 在X上一致化。此外,如果M是紧的,则(i)LAMBDA是正常数当且仅当M同构于球面空间形式S^<2n+1>/F,其中F * U(n+1)。(ii)LAMBDA=0当且仅当M同构于一个Heisenberg infranilmanifold N/<$MA,其中<$MA * N * U(n)。(iii)LAMBDA是一个负常数当且仅当M同构于一个Lorentz标准空间形式H^^-U ^^(n,1),其中Gamma^^-U^^-(n,1)。III. CR-结构的变形,共形结构。存在自然同态psi:Diff(S^1,M)-> Out(Gamma)。注意Ker psi包含子群Diff^0(S^1,M)。设G=Ker psi/Diff^0(S^1,M)。定理C.设M是2n+1维的闭S^1不变球面CR-流形(或闭S^1不变共形平坦n-流形)。设S^1半自由地作用在M上,使得轨道空间M^&lt;**&gt;是一个具有非空边界的Kahler-Kleinian orbifold D^<2n>-LAMBDA/Gamma^&lt;**&gt;(相应地,是一个具有非空边界的Kleinian orbifold D^<n-1>-LAMBDA/Gamma^*),且H ^2(Gamma^&lt;**&gt; ; Z)=0。若pi_1(M)不是虚可解的,则(1)hol:SCR(U(1),M)-&gt; R(&lt;$**&gt;,PU(n,1))/PU(n,1)XT ^k是一个覆盖映射,其纤维同构于G. (2)H:CO(SO(2),M)-&gt; R(Gamma^**&gt;,SO(n-1,1)^0/SO(n-1,1)^0 × T^k是一个覆盖映射,其纤维同构于G。少

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Kamishima: "On the 3-dimensional pseudo-Hermitian space forms and other geometric strutures, (to appear in Kumamoto Math.Journal)" (1994)
Y.Kamishima:“关于 3 维伪厄米空间形式和其他几何结构,(出现在 Kumamoto Math.Journal)”(1994 年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
神島 芳宣: "Deformation spaces on geometric structures" Advanced studies in Pure math.Aspects of Low Dimensional Manifolds. 20. 263-299 (1992)
Yoshinobu Kamishima:“几何结构上的变形空间”纯数学高级研究。低维流形方面20。263-299(1992)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
神島 芳宣: "Lorents structures and Killing vector fielth on manifolds" Droceendings of Worshops in Pure Muth. 10. 75-85 (1990)
Yoshinobu Kamishima:“流形上的洛伦兹结构和杀伤矢量场”Droceendings of Worshops in Pure Muth。 10. 75-85 (1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kamishima(with T.Tsuboi): "CR-structures on Seifert manifolds" Invent.Math.104. 149-163 (1991)
Y.Kamishima(与 T.Tsuboi):“Seifert 流形上的 CR 结构”Invent.Math.104。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
神島芳宣: "Standard Pseudo-Hermitian Structure and Seifert fibration on CR manifolds" Annals of golbal Analysis and Geometry. 4,(発表予定). 〓〓-〓〓 (1994)
Yoshinobu Kamishima:“CR 流形上的标准伪埃尔米特结构和 Seifert 纤维化”,《全球分析与几何年鉴》4,(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAMISHIAM Yoshinobu其他文献

KAMISHIAM Yoshinobu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
  • 批准号:
    23K11020
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
  • 批准号:
    DP220102232
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Discovery Projects
Geometric structure of integrable dynamical systems
可积动力系统的几何结构
  • 批准号:
    22K03383
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
  • 批准号:
    RGPIN-2017-05440
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Discovery Grants Program - Individual
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
  • 批准号:
    10445980
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
  • 批准号:
    10798457
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
  • 批准号:
    10701682
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
Geometric structure of mind-body synchronization created by interpersonal movement
人际运动创造的身心同步的几何结构
  • 批准号:
    22K19727
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Learning and Analysing Discrete Geometric Structure in Statistical Models
学习和分析统计模型中的离散几何结构
  • 批准号:
    2602130
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Studentship
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
  • 批准号:
    RGPIN-2017-05440
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了