Application of Neural Networks to Design, Evaluation and Modeling of Nonhomogeneous Structural Materials
神经网络在非均质结构材料设计、评估和建模中的应用
基本信息
- 批准号:05302029
- 负责人:
- 金额:$ 6.78万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonhomogeneous structural materials involve composite materials and bonded/welded materials. They are developed in order to realize better characteristics by combining several different materials. Compared with ordinary homogeneous materials, such nonhomogeneous materials would have some additional parameters controlling macroscopic material properties, i.e. difference of material properties, mixture ratio, mixing methods and so on. Thus it becomes very complicated and difficult to design, evaluate and model such nonhomogeneous materials. Through co-operative works among several researchers, this project investigated innovative methods for designing, evaluating and modeling nonhomogenous materials by combining neural networks and computational mechanics.Principal results of this study are as follows. (1) A constitutive relation of functionally graded material (FGM) in a thermal elastoplastic region is well modeled by combining neural networks and micromechanics for randomly distributed particle model.(2) Neural network based nondestructive crack detection methods were developed for ultrasonics and electric potential drop methods. They were successfuly applied to detect three dimensional surface cracks and inclined defects. (3) A neural network based inverse analysis method was successfully applied to identify damage area of fiber reinforced composite beam by measuring its eigen frequencies and modes. (4) Rough shape is hierarchically modeled using a quadtree technique, and is transformed into list structure using the coded boundary representation technique, and finally is converted into a simple shape model using neural networks.
非均质结构材料包括复合材料和粘接/焊接材料。它们是通过组合几种不同的材料来实现更好的特性而开发的。与一般的均匀材料相比,这种非均匀材料会有一些额外的参数来控制宏观材料的性质,即材料性质的不同、配合比、混合方法等。因此,设计、评价和模拟这种非均匀材料变得非常复杂和困难。通过多个研究人员的合作,本项目研究了神经网络和计算力学相结合的非均匀材料设计、评价和建模的创新方法。(1)采用神经网络和细观力学相结合的随机分布颗粒模型,较好地模拟了热弹塑性区功能梯度材料(FGM)的本构关系。(2)提出了基于神经网络的超声和电位降裂纹无损检测方法。它们成功地应用于三维表面裂纹和倾斜缺陷的检测。(3)通过测量纤维增强复合材料梁的固有频率和振型,成功地将基于神经网络的逆分析方法应用于纤维增强复合材料梁的损伤识别。(4)利用四叉树技术对粗略形状进行分层建模,利用编码边界表示技术将粗略形状转化为链表结构,最后利用神经网络将粗略形状转化为简单形状模型。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Yoshimura, Y.Saito and G.Yagawa: "Identification of Two Dissimilar Surface Cracks Hidden in Solid Using Neural Networks and Computational Mechanics" Computer Modeling and Simulation in Eng.Vol.1. 477-491 (1996)
S.Yoshimura、Y.Saito 和 G.Yakawa:“利用神经网络和计算力学识别隐藏在固体中的两种不同表面裂纹”《Eng.Vol.1》中的计算机建模和仿真。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Nakagaki,R.Kuranari,Y.Shibata,S.Hagihara: "Elastoplastic Crack Analysis of Thermally Shocked Functionally Graded Material with Neural Network Application" 1995 ASME/JSME Pressure Vessels &Piping Conf.(発表予定). (1995)
M. Nakagaki、R. Kuranari、Y. Shibata、S. Hagihara:“使用神经网络应用进行热冲击功能梯度材料的弹塑性裂纹分析”1995 ASME/JSME 压力容器和管道会议(即将发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
赤星保浩、吉村忍、矢川元基、曽根田直樹、酒井高行、井上昌信: "ニューラルネットワークの渦電流探傷システムへの応用" 第14回計算電気・電子工学シンポジウム講演論文集. 247-250 (1993)
Yasuhiro Akahoshi、Shinobu Yoshimura、Motoki Yakawa、Naoki Soneda、Takayuki Sakai、Masanobu Inoue:“神经网络在涡流探伤系统中的应用”第 14 届计算电气和电子工程研讨会论文集 247-250(1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
矢川元基、吉村忍、大石隆寛: "階層形ニューラルネットワークと計算力学による三次元き裂の形状同定" 日本機械学会論文集A編. 59. 526-534 (1993)
Motoki Yakawa、Shinobu Yoshimura、Takahiro Oishi:“使用分层神经网络和计算力学进行三维裂纹的形状识别”日本机械工程师学会会刊,A 版 59. 526-534 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAGAWA Genki其他文献
YAGAWA Genki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAGAWA Genki', 18)}}的其他基金
Massively Parallel Mesh-less Analysis System for Fluid-Structure Compied Phenomena in Nuclear Power Plants
核电厂流固现象大规模并行无网格分析系统
- 批准号:
11480121 - 财政年份:1999
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Asynchronous Parallel Computational Mechanics
异步并行计算力学研究
- 批准号:
09044136 - 财政年份:1997
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for international Scientific Research
Study on Massively Parallel Computational Mechanics
大规模并行计算力学研究
- 批准号:
07044123 - 财政年份:1995
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for international Scientific Research
Aging Evaluation and Life Time Extension of Nuclear Reactor Pressure Vessel Based on Micromechanics Using Ultra Large-Scale Particle System
基于超大规模粒子系统微力学的核反应堆压力容器老化评估和寿命延长
- 批准号:
05452387 - 财政年份:1993
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Study on Elastic ー Plastic Fracture Machanics in Nonhomogeneous Materials and Structures
非均质材料与结构弹塑性断裂力学研究
- 批准号:
01044043 - 财政年份:1989
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for international Scientific Research
DEVELOPMENT OF DYNAMIC FRACTURE TOUGHNESS TESTING APPARATUS
动态断裂韧性测试仪的研制
- 批准号:
59850019 - 财政年份:1984
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
相似海外基金
Conference: Student Support to Attend 17th US National Congress on Computational Mechanics; Albuquerque, New Mexico; 23-27 July 2023
会议:支持学生参加第十七届美国计算力学全国代表大会;
- 批准号:
2318585 - 财政年份:2023
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
EAGER: Quantum Algorithms for Solving Computational Mechanics Problems in Hybrid Quantum Computers
EAGER:解决混合量子计算机中计算力学问题的量子算法
- 批准号:
2222404 - 财政年份:2022
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
- 批准号:
RGPIN-2017-06375 - 财政年份:2022
- 资助金额:
$ 6.78万 - 项目类别:
Discovery Grants Program - Individual
Development of diagnostic and predictive computational mechanics methods for cardiovascular system
心血管系统诊断和预测计算力学方法的开发
- 批准号:
RGPIN-2017-05349 - 财政年份:2022
- 资助金额:
$ 6.78万 - 项目类别:
Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
- 批准号:
RGPIN-2017-06375 - 财政年份:2021
- 资助金额:
$ 6.78万 - 项目类别:
Discovery Grants Program - Individual
Computational Mechanics of welds and welded structures
焊缝和焊接结构的计算力学
- 批准号:
RGPIN-2016-06177 - 财政年份:2021
- 资助金额:
$ 6.78万 - 项目类别:
Discovery Grants Program - Individual
The Smallest Fabrication of Ultra Fine Wires by using Wiredrawing Technique: Computational Mechanics Approach
使用拉丝技术制造最小的超细线:计算力学方法
- 批准号:
21K03759 - 财政年份:2021
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of diagnostic and predictive computational mechanics methods for cardiovascular system
心血管系统诊断和预测计算力学方法的开发
- 批准号:
RGPIN-2017-05349 - 财政年份:2021
- 资助金额:
$ 6.78万 - 项目类别:
Discovery Grants Program - Individual
16th US National Congress on Computational Mechanics (USNCCM XVI); Virtual; July 25-29, 2021
第十六届美国全国计算力学大会(USNCCM XVI);
- 批准号:
2129730 - 财政年份:2021
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant














{{item.name}}会员




