Identification of Defect Levels in III-V Semiconductors Using Radioactive Isotopes
使用放射性同位素识别 III-V 半导体中的缺陷水平
基本信息
- 批准号:5257770
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2000
- 资助国家:德国
- 起止时间:1999-12-31 至 2002-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spectroscopic techniques used in semiconductor physics like photoluminescence (PL) and Hall-effect that are able to detect and to characterize band gap states do not reveal information about their microscopic origin. To overcome this chemical "blindness" of the electrical and optical methods the present approach is to use radioactive isotopes as a tracer. Because of the characteristic concentration change according to the nuclear decay law, their involvement in the formation of electronic band gap states can be confirmed or denied definitely. Doping semiconductors with a variety of radioactive isotopes isotopically clean in a quantitatively controlled way is only realizable by ion implantation. GaN and its alloys with AlN and InN are one of the most interesting classes of materials in actual semiconductor research due to their potential as optoelectronic devices. The electrical activation of implanted dopants into these systems is more complex compared to other III-V compounds since this materials have both strong inter-atomic bonding demanding high annealing temperatures, and a constituent, N, having a high vapor pressure. An imperative prerequisite for these implantation studies is therefore the unambiguous identification of the PL signals and electrical properties related to potential doping atoms in GaN using radioactive isotopes of these dopants. An important class of intrinsic defects in many compound semiconductor of type AB like GaAs are antisites where an A atom is placed on a B site (AB) or vice versa. It is still an open question what the electronic levels of the GaAs antisite in GaAs are. A unique way to create GaAs antisite defects in GaAs in a controlled way and to avoid the introduction of any other defects during the production process is the transmutation of radioactive 71As to stable 71Ga. This transmutation can be followed up by PL and possibly created states in the band gap due to antisites can be clearly identified.
半导体物理学中使用的光谱技术,如光致发光(PL)和霍尔效应,能够检测和表征带隙状态,但不能揭示其微观起源的信息。为了克服电学和光学方法的这种化学“盲目性”,本方法是使用放射性同位素作为示踪剂。由于特征浓度的变化符合核衰变规律,它们参与电子带隙态的形成可以被肯定或否定。用各种放射性同位素掺杂半导体,以定量控制的方式进行同位素清洁,只能通过离子注入实现。GaN及其与AlN和InN的合金是实际半导体研究中最有趣的一类材料之一,因为它们具有作为光电器件的潜力。与其他III-V族化合物相比,将注入的掺杂剂电激活到这些系统中更复杂,因为这种材料既具有要求高退火温度的强原子间键合,又具有具有高蒸气压的成分N。因此,这些注入研究的一个必要的先决条件是明确识别的PL信号和电气性能相关的潜在掺杂原子在GaN中使用这些掺杂剂的放射性同位素。在许多AB型化合物半导体(如GaAs)中的一类重要的本征缺陷是反位,其中A原子位于B位(AB)上,反之亦然。GaAs中GaAs反位的电子能级是多少,至今仍是一个悬而未决的问题。以受控方式在GaAs中产生GaAs反位缺陷并避免在生产过程中引入任何其他缺陷的独特方法是将放射性71 As嬗变为稳定的71 Ga。这种嬗变可以被PL跟踪,并且可以清楚地识别出由于反位而在带隙中可能产生的状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Manfred Deicher其他文献
Privatdozent Dr. Manfred Deicher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Corneal epithelial cell bandage to treat persistent epithelial defect
角膜上皮细胞绷带治疗持续性上皮缺损
- 批准号:
MR/Y019385/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Comparative single-cell analysis of disease-derived stem cells to identify the cell fate defect on the cell differentiation trajectory
对疾病来源的干细胞进行比较单细胞分析,以确定细胞分化轨迹上的细胞命运缺陷
- 批准号:
23H02466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of novel polyglycolic acid material for regeneration of central airway defect
新型聚乙醇酸再生中央气道缺损材料的研制
- 批准号:
23K08291 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
- 批准号:
2234594 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Digital Platform for Defect-free Plastic Pipes Welding (DIGIPIPEWELD)
无缺陷塑料管道焊接数字平台 (DIGIPIPEWELD)
- 批准号:
10055000 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Characteristic control based on quantitative evaluation of nano-defect and defect-induced strain field in functional materials
基于功能材料纳米缺陷和缺陷诱发应变场定量评估的特性控制
- 批准号:
23KK0087 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
- 批准号:
10061803 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Investigation of genetic variants and clinical risk factors associated with the progression rate of visual field defect in glaucoma
与青光眼视野缺损进展率相关的遗传变异和临床危险因素的调查
- 批准号:
23K09030 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




