A structure-preserving compact high-order method for multi-dimensional hyperbolic conservation laws

多维双曲守恒定律的结构保持紧凑高阶方法

基本信息

项目摘要

Multi-dimensional conservation laws possess many more phenomena than their one-dimensional counterparts, for example turbulent flow with vortices and non-trivial stationary states. At the same time, computational resources are limited, and refinement is particularly costly for multi-dimensional simulations. Currently available numerical methods are only able to capture multi-dimensional phenomena upon excessive grid refinement. This is because they add numerical diffusion that is rooted in one- dimensional thinking, and also because the fluxes are computed using Riemann problems. For subsonic flow, the latter spoil the solution. We propose a new hybrid finite element – finite volume method that achieves upwinding by locally evolving continuous data, instead of solving a Riemann problem. Its degrees of freedom are cell averages/moments and point values located at cell interfaces, the lat- ter being shared between adjacent cells. The evolution of the averages is conservative, which means that the method is able to converge to the weak solution. The lowest (3rd) order method can be found in the literature under the name of Active Flux and has been shown to achieve superior results on coarse grids, because it is structure preserving. In our new method, the evolution of higher moments makes it arbitrarily high-order accurate. Currently, Active Flux methods are available for linear, or one- dimensional problems. This project aims at developing our new method for multi-dimensional systems of conservation laws, in particular the full multi-dimensional Euler equations and analyzing its structure preservation properties. This project will be done in close cooperation with Wasilij Barsukow / University of Bordeaux, France.
多维守恒律比一维守恒律具有更多的现象,例如具有涡和非平凡定态的湍流。同时,计算资源是有限的,并且对于多维模拟而言,细化特别昂贵。目前可用的数值方法只能捕捉多维现象过度网格细化。这是因为他们增加了根植于一维思维的数值扩散,也因为通量是使用黎曼问题计算的。对于亚音速流,后者破坏了解.我们提出了一种新的混合有限元-有限体积方法,通过局部演化连续数据来实现迎风,而不是解决黎曼问题。其自由度是单元平均值/力矩和位于单元界面处的点值,后者在相邻单元之间共享。平均值的演化是保守的,这意味着该方法能够收敛到弱解。最低(3)阶方法可以在文献中找到,名称为主动通量,并已被证明在粗网格上实现上级结果,因为它是结构保持。在我们的新方法中,高阶矩的演化使其具有任意高阶精度。目前,主动通量法可用于线性或一维问题.本项目旨在发展我们的新方法,用于多维守恒律系统,特别是全多维Euler方程,并分析其结构保持性。该项目将与法国波尔多大学Wasilij Barsukow密切合作完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Christian Klingenberg, Ph.D.其他文献

Professor Dr. Christian Klingenberg, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Christian Klingenberg, Ph.D.', 18)}}的其他基金

Development and astrophysical application of a well-balanced asymptotic preserving scheme for ideal magnetohydrodynamics with gravity
理想重力磁流体动力学的平衡渐近保持方案的开发和天体物理应用
  • 批准号:
    418833237
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
EXAMAG - Exascale simulations of the magnetic universe
EXAMAG - 磁宇宙的百亿亿次模拟
  • 批准号:
    230875678
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Molekulare Ströme während der Sternentstehung
恒星形成过程中的分子流
  • 批准号:
    5075884
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

面向MANET的密钥管理关键技术研究
  • 批准号:
    61173188
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Y03743X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了