関数空間上の荷重合成作用素について

关于函数空间上的权重复合算子

基本信息

  • 批准号:
    05740087
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 无数据
  • 项目状态:
    已结题

项目摘要

今年度も、昨年度にひきつづき、種々の具体的な空間において、その上の荷重合成作用素の性質を調べた。以下、得られたことを3つにわけて報告する。まずはじめは、連続関数の空間C(X)上の荷重合成作用素uC_¢:f→u・(fo¢)についてである。今回は、この作用素uC¢がFredholm作用素になるための必要十分条件を与えた。この条件は、定義域Xの孤立点に関連して述べられる。そして、Xが多様体のようなきれいな性質をもつとき、この条件は、非常に明解なものとなり、ひいては、uC¢がFredholm作用素になることと、可逆であることが、同値になる。この同値性は、実は、非原子的な測度によるL^P-空間(1(8169816C)_<16>SY.ltoreq.(816B816A)_<16>p<∞)上の荷重合成作用素に対しても成立する。このことは、R.K.SinghとT.Veluchamyの結果の拡張でもある。2番めは、作用素からなる空間上の荷重合成作用素に関するもので、R.K.Singh及びB.Singhとの共同研究である。作用素の空間をとりあげた理由は、非可換Banach環上の荷重合成作用素に対する疑問や興味と、それらの研究がほとんどみられないことによる。ここでは、距離づけされた局所凸空間上の連続線形作用素の空間をとりあげ、その上の荷重合成作用素が連続になるための必要十分条件を与えた。3番めは、解析関数からなる空間を扱うもので、上述の2件とは少々趣きが変わる。H^∞(D^n)を、多重開円板D^n上の有界正則関数全体の空間(Hardy空間)とするとき、H^∞(D^n)上の荷重合成作用素がコンパクトになるための必要十分条件を与えた。n=1の場合は、すでに解決ずみであったが、今回は、その証明のワンステップを別の方法で回避することで、n(8169816C)_<16>SY.gtoreq.(816B816A)_<16>2の場合まで、一般化したものである。この結果はさらにベクトル値正則関数の空間の話題にまで発展できそうなので、現在考慮中である。
This year, the year before, the year before, the specific space, the above load synthesis factor property adjustment The following is a summary of the results. The load synthesis factor uC_(f) →u·(fo) on the space C(X) The necessary conditions for the action of Fredholm are: This condition is related to the isolated point of domain X. X is a polyhedron with properties such as L^P-space (1(8169816C)_<16>SY.ltoreq. (816B816A)_<16>p&lt;∞) R. K. Singh T.Veluchamy and R. K. Singh T.Veluchamy 2. Joint study of R.K.Singh and B.Singh The space of the action element is divided into two parts, namely, the space of the action element is divided into two parts, namely, the space of the action element is divided into two parts, and the space of the action element is divided into two parts. The space of the linear action on the convex space is the necessary condition for the linear action on the convex space. 3, analysis of the number of related, the above two pieces of The necessary conditions for the bounded canonical relations on H ^∞(D^n) n=1, n = 1, n <16>= (816B816A)_<16>2 In case, generalizations are made. The result is that the space of regular relations is a topic of development and consideration.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

高木 啓行其他文献

Homomorphisms and isometries on Banach algebras of vector-valued maps
向量值映射的 Banach 代数上的同态和等距
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    古清水 大直;高木 啓行;植木誠一郎;Osamu Hatori;羽鳥 理;Osamu Hatori;羽鳥 理;Osamu Hatori
  • 通讯作者:
    Osamu Hatori
Spectrum preserving maps and isomorphisms
频谱保留图和同构
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    羽鳥 理;三浦 毅(発表者);高木 啓行;三浦 毅;三浦毅;K. Eda;K. Eda;K. Kawamura;K. Eda;加藤 久男;三浦 毅;三浦毅・木間大;T. Miura and D. Honma;O. Hatori;高橋眞映・三浦毅・早田孝博;T. Miura. S-E. Takahasi and T. Hayata;羽鳥理・三浦毅・高木啓行;山崎薫里;T. Miura;三浦毅;O. Hatori
  • 通讯作者:
    O. Hatori
Banach空間上の等長作用素の形について
关于Banach空间上等距算子的形式
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    古清水 大直;高木 啓行
  • 通讯作者:
    高木 啓行
シフト作用素の一般化について
关于移位运算符的泛化
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nishio;N. Suzuki;M. Yamada;高木 啓行;Akihiko Miyachi;高木啓行
  • 通讯作者:
    高木啓行
An elementary proof of Wirtinger inequalilty
维廷格不等式的基本证明
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    羽鳥 理;三浦 毅(発表者);高木 啓行;三浦 毅;三浦毅;K. Eda;K. Eda;K. Kawamura;K. Eda;加藤 久男;三浦 毅;三浦毅・木間大;T. Miura and D. Honma;O. Hatori;高橋眞映・三浦毅・早田孝博;T. Miura. S-E. Takahasi and T. Hayata
  • 通讯作者:
    T. Miura. S-E. Takahasi and T. Hayata

高木 啓行的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('高木 啓行', 18)}}的其他基金

荷重合成作用素の保存構造の研究
权重复合算子的保守结构研究
  • 批准号:
    15K04897
  • 财政年份:
    2015
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
解析関数からなる空間上の合成作用素について
关于由解析函数组成的空间上的复合运算符
  • 批准号:
    02740091
  • 财政年份:
    1990
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了