Theoretical Study of Glass Transition and Slow Dynamics

玻璃化转变和慢动力学的理论研究

基本信息

  • 批准号:
    06640509
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

The main theme of the present research project is to understand the dynamical properties of vitrification process in a unified manner and to elucidate the physics of the glass forming process. We studied the trapping diffusion model (TDM) more throughly and gave the theoretical foundation of the model. We also performed a molecular dynamics simulation to find out the changes in dynamical properties of supercooled liquids.We extended the TDM to include the trapped motion as well as the non-trapped jump motion and obtained the dynamical structure factor. We showed that the main relaxation time obeys the Vogel-Fulcher law and obtained the non-Gaussianity which agees qualitatively with experiments.We also devised a new technique (log-Cole-Cole analysis) with which we can find easily the nature of the relaxation.The extensive MD simulation was carried out for a binary soft shpere system covering the liquid state, supercooled liquid state and glassy state. We found the Vogel-Fulcher law for the main relaxation time, Boson-peak and the fast process.We proposed an ideal three model mode consisting of an oscillation and two kinds of stochastic motions and showed that this model can reproduce the dynamical charasteristics of supercooled liquids.The foundation of the TDM was discussed extensively and it was shown that similar dynamics would be commonly observed in systems with activation processes with randam activation energies. We also showed that the divergence of various moments signifies the dynamical transitions and that the difference of temerature multiplied by the excess entropy from its value the glass transition point can serve as the scaling parameter for the transition.
本研究项目的主题是以统一的方式理解玻璃化过程的动力学性质,并阐明玻璃形成过程的物理机制。对捕获扩散模型(TDM)进行了较深入的研究,给出了模型的理论基础。我们还进行了分子动力学模拟,研究了过冷液体动力学性质的变化,将TDM扩展到包含囚禁运动和非囚禁跳跃运动,得到了动力学结构因子。我们证明了主弛豫时间服从Vogel-Fulcher定律,得到了与实验定性相符的非高斯性,并设计了一种新的分析方法(log-科尔-科尔分析),用它可以很容易地发现弛豫的本质。我们发现Vogel-Fulcher定律的主要弛豫时间,玻色子-本文提出了一个由振荡和两种随机运动组成的理想三模模型,并证明了该模型能再现过冷液体的动力学特性。本文还对三模模型的基础作了广泛的讨论,并指出在具有随机运动的活化过程的系统中,通常也能观察到类似的动力学特性活化能我们还表明,发散的各种时刻表示的动力学转变和温度乘以过剩熵从其值的玻璃化转变点的差异可以作为转换的标度参数。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Hiwatari: "Slow Dynamics in Supercooled Fluids" J.Mole.Liquids. Vol.65/Vol.66. 123-130 (1995)
Y.Hiwatari:“过冷流体中的慢速动力学”J.Mole.Liquids。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Matsui: "Study of the slow dynamics in a highly supercooled fluid : Super-long-time molecular dynamics calculation of the generalized susceptibility" Phys.Rev.Lett.73. 2452-2455 (1994)
J.Matsui:“高度过冷流体中的慢速动力学研究:广义磁化率的超长时间分子动力学计算”Phys.Rev.Lett.73。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Odagaki: "Slow dynamics in supercooled liquids" Phys.Rev.E.Vol.49. 3150-3159 (1994)
T.Odagaki:“过冷液体中的慢动力学”Phys.Rev.E.Vol.49。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Odagaki: "A unified theory for the glass transition singularities" 物性研究. 66・3. 516-519 (1996)
T.Odagaki:“玻璃化转变奇点的统一理论”凝聚态材料研究 66・3(1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kaneda: "Two-scale relation in one-dimensional crystals and wavelets" J.Phys.A. 28. 4389-4406 (1995)
K.Kaneda:“一维晶体和小波中的双尺度关系”J.Phys.A.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ODAGAKI Takashi其他文献

ODAGAKI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ODAGAKI Takashi', 18)}}的其他基金

Theoretical study of glass transition on the basis of the Free energy landscape
基于自由能景观的玻璃化转变理论研究
  • 批准号:
    22540400
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Free energy landscape theory for unified understanding of glass transition
统一理解玻璃化转变的自由能景观理论
  • 批准号:
    19540405
  • 财政年份:
    2007
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
First-principle determination of landscape and the unifying concept for glass transition
景观的第一性原理确定与玻璃化转变的统一概念
  • 批准号:
    15340139
  • 财政年份:
    2003
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of glass transition in the energy landscape picture and nonequilibrium statistical physics
能量景观图中的玻璃化转变理论与非平衡统计物理
  • 批准号:
    13640389
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mode Coupling Theory and Trapping Model of Glass Transition
玻璃化转变的模式耦合理论和俘获模型
  • 批准号:
    11640379
  • 财政年份:
    1999
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unified Theory of Glass Transition
玻璃化转变统一理论
  • 批准号:
    09640467
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic approach to glass transitions
玻璃化转变的随机方法
  • 批准号:
    02640275
  • 财政年份:
    1990
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了