Prediction and surrogate modelling of thermodynamics properties of mixtures with application to the inverse design under uncertainty
混合物热力学性质的预测和替代建模及其在不确定性下逆设计中的应用
基本信息
- 批准号:526254705
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The selection of a suitable working fluid represents one of the most important factors in the design of a thermodynamic cycle. As the fluid has to meet manifold criteria, mixtures are gaining increasingly importance in order to obtain the most appropriate solution, i.e. the required combination of properties unattainable by pure compounds. Two different strategies are followed in the literature for the fluid design: 1. A computer-aided model (mixture) design approach in combination with the formulation of a mixed-inter-nonlinear-programming (MINLP) problem - which though usually employs property models with limited accuracy or models, which do not include widely used refrigerants. 2. A screening approach, i.e. performing system simulations of the defined cycle for a large number of fluids described by highly accurate multiparameter Helmholtz equations of state (HEOS) that are considered state of the art for the calculation of thermophysical properties. HEOS though are too computationally demanding to allow for their use in the MINLP. Furthermore, potential working fluid mixtures whose mixing parameters or models for the HEOS are missing need to be excluded from screenings. The aim of the proposed project is to overcome these two main restrictions when using HEOS is the working fluid selection. This will be achieved by the development of dedicated surrogate models based on Gaussian processes (GP) for HEOS of (binary) refrigerant mixtures to enable the efficient calculation of their thermodynamic properties in a MINLP based design approach. Additionally, molecular simulations on mixtures not yet described by optimized HEOS will allow to derive their mixing parameters so that they can also be included in the optimization process. To account for the mismatch between the HEOS and molecular simulations, we will introduce stochastic HEOS models, for which stochastic GP surrogates will be generated. These stochastic surrogate models will be employed in a MINLP to identify a suitable mixture for a specific application. The stochastic approach followed in this proposal will additionally allow for optimization considering uncertainties of the underlying property models.
选择合适的工质是热力循环设计中最重要的因素之一。由于流体必须满足多种标准,为了获得最合适的溶液,混合物变得越来越重要,即纯化合物无法达到的所需性能组合。在文献中,流体设计遵循两种不同的策略:1.计算机辅助模型(混合物)设计方法与混合交互非线性规划(MINLP)问题的公式相结合-尽管通常使用精度有限的属性模型或不包括广泛使用的制冷剂的模型。2.筛选方法,即对由高精度多参数Helmholtz状态方程(HEOS)描述的大量流体执行所定义的循环的系统模拟,该多参数Helmholtz状态方程被认为是计算热物理性质的最新技术。然而,HEO在计算上要求太高,不允许在MINLP中使用它们。此外,需要将其混合参数或HEOS模型缺失的潜在工作流体混合物排除在筛查之外。建议项目的目的是克服当使用HEOS作为工质选择时的这两个主要限制。这将通过为(二元)制冷剂混合物的HEOS开发基于高斯过程(GP)的专用替代模型来实现,以便能够在基于MINLP的设计方法中有效地计算其热力学性质。此外,对尚未被优化的HEOS描述的混合物的分子模拟将允许导出它们的混合参数,以便它们也可以被包括在优化过程中。为了解释HEOS和分子模拟之间的不匹配,我们将引入随机HEOS模型,该模型将产生随机GP替代。这些随机替代模型将在MINLP中使用,以确定适合特定应用的混合物。本提案中采用的随机方法还将考虑到基础属性模型的不确定性进行优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Gabriele Raabe其他文献
Professorin Dr.-Ing. Gabriele Raabe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Gabriele Raabe', 18)}}的其他基金
Analysis of molecular influence factors on the properties of refrigerant-lubricant mixtures
冰箱润滑油混合物性能的分子影响因素分析
- 批准号:
434193542 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Systematic extension of a force field for fluorinated propenes to HCFO and longer-chained HFO compounds, and its application for studies on new working fluids
氟化丙烯力场向 HCFO 和长链 HFO 化合物的系统扩展及其在新型工作流体研究中的应用
- 批准号:
326429904 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Development of force field models for alternative refrigerants based on fluoropropenes, including HFO-1234yf
开发基于氟丙烯的替代制冷剂(包括 HFO-1234yf)的力场模型
- 批准号:
123023523 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Fellowships
相似海外基金
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
- 批准号:
2746484 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Surrogate Outcomes: Modelling Uptake in Clinical Trials and Deriving From Multiple Biomarkers
替代结果:临床试验中的摄取建模并源自多种生物标志物
- 批准号:
2744573 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Surrogate modelling of building energy use
建筑能源使用的替代模型
- 批准号:
RGPIN-2022-03830 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Modelling Framework to Generate Surrogate Models of a Building Performance Simulation Tool
用于生成建筑性能模拟工具替代模型的建模框架
- 批准号:
572688-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
A Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Modelling Framework for High-Fidelity Thermal Fatigue Modelling of Components
用于组件高保真热疲劳建模的贝叶斯神经网络 (BNN) 机器学习 (ML) 代理建模框架
- 批准号:
2622146 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Improved surrogate modelling for tidal power
改进的潮汐能替代模型
- 批准号:
466321-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Design and assessment of suitable surrogate fuels for diesel fuel modelling
用于柴油燃料建模的合适替代燃料的设计和评估
- 批准号:
EP/G027730/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant
Design and assessment of suitable surrogate fuels for diesel fuel modelling
用于柴油燃料建模的合适替代燃料的设计和评估
- 批准号:
EP/G028672/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant
Surrogate-modelling for monitoring of implants (A07)
用于监测植入物的替代模型 (A07)
- 批准号:
466151733 - 财政年份:
- 资助金额:
-- - 项目类别:
CRC/Transregios