Surrogate modelling of building energy use

建筑能源使用的替代模型

基本信息

  • 批准号:
    RGPIN-2022-03830
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Surrogate modelling is emerging as a revolutionary means of estimating energy use for building designs, which will be essential in delivering the low-energy buildings required to help prevent catastrophic climate change. New building designs and retrofits to old buildings must achieve very low levels of energy use to reduce the ~1/3 of carbon emissions currently caused by the building sector. This requires careful balancing of different aspects of performance, e.g. minimising winter heating demand versus summer cooling demand or overheating risk. Energy simulation programs that numerically calculate heat transfer in a proposed building design and thus its energy requirements are currently widely used in industry. However, the computational time required (several minutes per design option) is not conducive to the intuitive exploration of the performance of many different designs. Surrogate modelling performs many simulations spanning the design space of possible building designs, then fits a machine learning model to the resulting synthetic data that maps design variables to performance metrics. These surrogate models are approximate, but have been shown to represent the underlying system with great accuracy. Surrogate models are almost instant to evaluate, allowing designers to explore building performance trade-offs in a more natural manner using interactive apps in which visual performance outputs respond instantly to changes in inputs. The scientific approaches required to improve surrogate modelling span traditional building energy simulations and machine learning methods. The former covers the fundamental physics that governs energy flows in buildings, the computational means of simulating them, and the software methods to vary key parameters automatically. The machine learning techniques necessary for surrogate modelling include the fundamentals of neural networks, the advanced methods needed to capture the complexities of the underlying system, and the statistical techniques required to assess performance. The objective is to develop and refine surrogate modelling techniques that will advance this nascent field in bold new directions. This will involve both the machine learning techniques to be used for such models and their application to specific fields of modelling. The outcomes will have great significance in both short-term benefits and in the potential to revolutionize the field of building energy simulation. The models and methods produced are immediately applicable, as demonstrated by the industry collaborations already applying initial results. In the longer term, surrogate modelling could replace building energy simulation in early-stage design exploration, where instant evaluation is more useful than absolute accuracy. There will also be benefits in the training of highly-qualified personnel who possess a unique skillset spanning existing simulation approaches and emerging machine learning techniques.
替代模型正在成为一种革命性的方法,用于估计建筑设计的能源使用情况,这将是提供帮助防止灾难性气候变化所需的低能源建筑的关键。新的建筑设计和对旧建筑的改造必须实现非常低的能源使用水平,以减少目前由建筑部门造成的~1/3的碳排放。这需要仔细平衡性能的不同方面,例如将冬季供暖需求与夏季降温需求或过热风险降至最低。能量模拟程序是对拟议建筑设计中的热传递进行数值计算的程序,因此它的能量需求目前在工业中被广泛使用。然而,所需的计算时间(每个设计选项需要几分钟)不利于直观地探索许多不同设计的性能。代理建模在可能的建筑设计的设计空间中执行许多模拟,然后将机器学习模型与生成的将设计变量映射到性能指标的合成数据进行匹配。这些代理模型是近似的,但已被证明以极高的精确度代表了底层系统。代理模型几乎可以立即进行评估,使设计师能够使用交互式应用程序以更自然的方式探索构建性能权衡,在这些应用程序中,视觉性能输出会立即对输入的变化做出反应。改进代理模型所需的科学方法跨越了传统的建筑能源模拟和机器学习方法。前者包括控制建筑物内能量流动的基本物理、模拟能量流动的计算方法以及自动改变关键参数的软件方法。代理建模所需的机器学习技术包括神经网络的基本原理、捕捉底层系统复杂性所需的高级方法以及评估性能所需的统计技术。其目标是开发和改进代理建模技术,以推动这一新兴领域向大胆的新方向发展。这将涉及用于这类模型的机器学习技术及其在特定建模领域的应用。这一成果将对建筑节能模拟领域的短期效益和潜在革命性具有重大意义。产生的模型和方法立即适用,正如已经应用初步结果的行业合作所表明的那样。从长远来看,在设计探索的早期阶段,替代模型可以取代建筑能耗模拟,在这一阶段,即时评估比绝对准确性更有用。培训具备现有模拟方法和新兴机器学习技术的独特技能的高素质人员也将受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evins, Ralph其他文献

A Conditional Generative adversarial Network for energy use in multiple buildings using scarce data
  • DOI:
    10.1016/j.egyai.2021.100087
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baasch, Gaby;Rousseau, Guillaume;Evins, Ralph
  • 通讯作者:
    Evins, Ralph

Evins, Ralph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evins, Ralph', 18)}}的其他基金

Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Collaborative Research and Development Grants
The ReBuild Initiative - A nexus for research into data-driven retrofit solutions for energy-efficient buildings
重建计划 - 研究数据驱动的节能建筑改造解决方案的纽带
  • 批准号:
    566285-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Alliance Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Collaborative Research and Development Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Collaborative Research and Development Grants
Sensor-driven analysis of retrofit options for low energy buildings**
低能耗建筑改造方案的传感器驱动分析**
  • 批准号:
    536485-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Engage Grants Program
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
SmartEMS: Applying machine learning in building energy management systems
SmartEMS:将机器学习应用于建筑能源管理系统
  • 批准号:
    514444-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Building an epidemiological modelling toolkit for epidemic preparedness
构建流行病学建模工具包以做好流行病防范
  • 批准号:
    MR/Z503939/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Research Grant
Unlocking whole-building retrofit through virtual modelling and real-world simulation
通过虚拟建模和现实世界模拟解锁整个建筑改造
  • 批准号:
    10081067
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Collaborative R&D
Performance-based seismic design method based on Building Information Modelling
基于建筑信息模型的性能化抗震设计方法
  • 批准号:
    562502-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Alliance Grants
Building the bridge from atomistic to stochastic modelling of nanoscale friction phenomena
搭建纳米级摩擦现象从原子建模到随机建模的桥梁
  • 批准号:
    RGPIN-2015-04486
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Building a modelling framework to aid the identification and management of key conservation areas for UK seabirds
建立建模框架以帮助识别和管理英国海鸟的关键保护区
  • 批准号:
    2705376
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Studentship
Physics-informed Machine Learning Modelling for Multi-scale Building Energy Systems with Enhanced Accuracy and Interpretability
具有更高准确性和可解释性的多尺度建筑能源系统的基于物理的机器学习建模
  • 批准号:
    2725680
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Studentship
BIM (Building Information Modelling) based Construction supply chain management under risk and uncertainty
基于BIM(建筑信息模型)的风险和不确定性下的建筑供应链管理
  • 批准号:
    RGPIN-2018-04074
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study, Modelling and Design of High-Temperature Ground Thermal Energy Storage for Achieving Energy Efficient Building Energy Systems
实现节能建筑能源系统的高温地面热能储存的实验研究、建模和设计
  • 批准号:
    RGPIN-2017-04688
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Characterization and modelling of bio-based insulation materials in the building envelopes for low carbon buildings
低碳建筑围护结构中生物基隔热材料的表征和建模
  • 批准号:
    RGPIN-2020-06281
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and Modelling Canadian Urban Systems and their Climate Interactions for Resilience Building and Developing Climate Change Adaptation Measures
了解和模拟加拿大城市系统及其气候相互作用,以增强抵御能力并制定气候变化适应措施
  • 批准号:
    RGPIN-2019-05238
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了