有限要素法と境界要素法の併用法による導体運動を伴う渦電流場の三次元解析

结合有限元法和边界元法对导体运动涡流场进行三维分析

基本信息

  • 批准号:
    06750290
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

本研究は電気機器設計に対する応用を前提とした三次元電磁界の有力な数値解析手法の開発を目指しており、特に現在まで長期にわたり本研究代表者が開発してきた有限要素・境界要素併用法の導体運動を伴う渦電流場問題への拡張が具体的な目標である。三次元解析では未知数の個数が急増するため、反復計算により導体運動を伴う電磁現象をステップ毎に解析していく上で膨大な計算時間を要する。したがって解析精度を落とすことなく未知数の個数を減らす工夫が重要である。本研究の対象である有限要素・境界要素併用法は広大な空気領域を境界法である境界要素法で定式化するため、未知数の少なさの点で大変有利である。この併用法の長所を更にのばす目的で、磁界の強さHと磁気スカラポテンシャルψを考察物理量とするH-ψ法を提案し、さらに未知数減少を最優先としたψを極力多用する定式化や複雑な励磁電流分布への対応を考慮したHによる定式化等に成功した。また有限要素法と境界要素法の接合に適し、かつ未知変数のさらなる減少に有効な辺要素を定式化に導入し、H、ψ以外の様々な物理量を未知変数として採用することを可能にした。具体的には有限要素法領域に磁気ベクトルポテンシャルA、変形磁気ベクトルポテンシャルA^*、電界の強さEなどを適用した新たな定式化の開発に成功し、各定式化の得失も明らかにした。これら全ての併用法に対して、実測値が公表されている数種の三次元渦電流場検証モデルの解析を行い有効性を確認した。このような基礎理論の開発と並行して三次元電磁界解析の導体運動を伴う実際の電気機器への応用も試みた。具体的には、リニア誘導機における縁効果や二次導体の移動速度のもたらす影響などの数値解析を行い、機器の特性改善の指針となる有効な解析結果を得て、各併用法の妥当性と有効性を確認した。以上、研究期間を通じて予定通り研究を進めることができた。
In this study, the computer design system uses the premise that the three-dimensional magnetic field data analysis method is used to analyze the three-dimensional magnetic field data. In this study, the representative of this study is concerned about the use of finite element boundary elements in this study. Three-dimensional analysis of the number of unknowns, the number of units, the number of unknowns, the number of unknowns The accuracy of the analysis is very important. In this study, the use of finite element boundary elements, the use of boundary elements, the method of boundary elements, the use of limited elements, the usage of finite elements, the use of boundary elements, boundary elements The main purpose of this paper is to determine the purpose of the magnetic field, the magnetic current distribution, and so on. The finite element method, the boundary element method, the boundary element method, In the field of finite element law, the specific magnetic field, the electronic industry and the electronic industry use the new format to open the success story, and the gains and losses of each format are clear. It is necessary to verify that there are several three-dimensional flow field analysis and analysis lines in the public table. On the basis of the basic theory, we will conduct a parallel three-dimensional magnetic field analysis, which is associated with the use of international electronic machines. In terms of the specific equipment and equipment, the movement speed of the secondary vehicle is analyzed, and the characteristics of the machine are improved. The results of the analysis are good, and the proper use of each method confirms the accuracy of the results. The above, during the study period, it is scheduled that the general study will be conducted during the study period.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

若尾 真治其他文献

若尾 真治的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('若尾 真治', 18)}}的其他基金

広域災害に対するインテリジェント太陽光発電システムの開発
广域灾害智能太阳能发电系统开发
  • 批准号:
    15760205
  • 财政年份:
    2003
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
機器設計に対する三次元磁界解析手法の開発
设备设计三维磁场分析方法的发展
  • 批准号:
    01F00209
  • 财政年份:
    2003
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
電磁界数値解析による高齢者用医療機器システムの最適設計および実用化に関する研究
基于电磁场数值分析的老年医疗器械系统优化设计及实际应用研究
  • 批准号:
    11750240
  • 财政年份:
    1999
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
電磁界数値解析と数理計画法との併用による電気機器の最適設計法の開発
利用电磁场数值分析和数学规划开发电气设备优化设计方法
  • 批准号:
    09750328
  • 财政年份:
    1997
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

高速多重極法に基づく線型方程式の高速直接解法の開発と境界要素法への応用
基于快速多极子法的线性方程组快速直接求解方法的发展及其在边界元法中的应用
  • 批准号:
    24K20783
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
proxy法に適合する新たな積分方程式による高速直接境界要素法の開発
使用与代理方法兼容的新积分方程开发快速直接边界元方法
  • 批准号:
    23K19972
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A new boundary element method for free surface flows
一种新的自由表面流边界元方法
  • 批准号:
    573089-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    University Undergraduate Student Research Awards
Boundary element method for domains whose Green's function is not available
格林函数不可用域的边界元法
  • 批准号:
    21K19764
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
3次元電磁波動散乱問題に対する時間領域境界要素法の高速アルゴリズムの開発
三维电磁波散射问题时域边界元法高速算法开发
  • 批准号:
    21H03454
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
  • 批准号:
    534339-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A study on a space-time boundary element method for the wave equation
波动方程时空边界元法研究
  • 批准号:
    20K11849
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
境界要素法によるリチウム含有溶融フッ化物塩と接する構造材料腐食の予測
使用边界元法预测与含锂熔融氟化物盐接触的结构材料的腐蚀
  • 批准号:
    20J14519
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Coupling of fictitious domain methods and the boundary element method for the analysis of acoustic metamaterials
虚拟域方法与边界元方法耦合用于声学超材料分析
  • 批准号:
    423317638
  • 财政年份:
    2019
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Research Grants
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
  • 批准号:
    534339-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了