Numerical Astrophysics Using Supercomputers and Adaptive Scheme

使用超级计算机和自适应方案的数值天体物理学

基本信息

  • 批准号:
    07304025
  • 负责人:
  • 金额:
    $ 3.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

We are able to use several kinds of supercomputers in the field of astrophysics. They are vector-parallel machines, massive parallel machines, and special purpose machines. To bring their full play, we have to choose the most effective numerical method. Although the field of numerical astrophysics is wide : from the solar system to the universe, there must be a common bottleneck which should be broken to make a breakthrough. This project were planned to answer the above point.1.The (magneto-) hydrodynamics equation is one of the most important ones in the astrophysics. Equations for the unsteady hydrodynamics are hyperbolic-type. In this case, it is shown that data are easily divided and allocated onto a number of processors. We are able to parallelize the code and achive high performance.2.On the other hand, the elliptical-type equation, such as the Poisson equation, which is also one of the most important ones in the astrophysics, is poorly parallelized. This is mainly due to the fact that it is difficult to parallelize the preconditioning of the coefficient matrix.3.As a Poisson solver, we have found that "multigrid iteration method" is fast compared to the ordinary solvers which were poorly parallelized. We have measured the CPU time necessary to solve the Poisson equation once by this method. It is only a half of the time required to solve the magnetohydrodynamics equations for one time step.4.It is shown that the nested grid technique is very efficient for a problem with a large spatial dynamic range. It uses a number of grids ; coarser grids covers a whole numerical box, while finer ones cover a region which require a fine spatial resolution.5.To proceed from the nested grid scheme to a fully adaptive one, we have to develop a method of creation/destruction of the grids. This requires the code to understand which part should be calculated closely.
我们能够在天体物理学领域使用几种超级计算机。它们是向量并行机、大规模并行机和专用机。为了充分发挥它们的作用,我们必须选择最有效的数值方法。虽然数值天体物理学的研究领域很广,从太阳系到宇宙,都有一个共同的瓶颈,要想取得突破,就必须突破这个瓶颈。磁流体动力学方程是天体物理学中最重要的方程之一。非定常流体动力学方程是双曲型的。在这种情况下,它表明,数据很容易划分和分配到一些处理器。另一方面,椭圆型方程,如泊松方程,也是天体物理中最重要的方程之一,其并行化程度很低。这主要是由于系数矩阵的预处理很难并行化。3.作为一个泊松求解器,我们发现“多重网格迭代法”是快速相比,普通的求解器,这是很差的并行化。我们已经测量了用这种方法求解一次泊松方程所需的CPU时间。计算结果表明,嵌套网格技术对于求解大空间动态范围的问题是非常有效的。它使用了大量的网格;粗网格覆盖了整个数值框,而细网格覆盖了需要精细空间分辨率的区域。5.为了从嵌套网格方案到完全自适应的方案,我们必须开发一种创建/销毁网格的方法。这就要求代码理解哪个部分应该被仔细计算。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matsumoto,R.: "Magnetic Viscosity by Localized Shear Flow Instability in Magnetized Accretion Disks" Astrophy.J.445. 767-779 (1995)
Matsumoto,R.:“磁化吸积盘中局域剪切流不稳定性的磁粘度”Astrophy.J.445。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Gouda, N.: "Analysis of Non-Linear Mode Coupling of Cosmological Density Fluctuations by the Pseudo-Spectral Method" Prog.Theor.Phys.94. 33-45 (1995)
Gouda, N.:“用伪谱方法分析宇宙密度涨落的非线性模式耦合”Prog.Theor.Phys.94。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshida,T.: "Unpulsed High Energy Gamma-rays from a Plerionic Nebula" Proceedings of the 24th International Cosmic Ray Conference. Vol.2. 397-400 (1995)
Yoshida,T.:“来自昙离子星云的非脉冲高能伽马射线”第 24 届国际宇宙射线会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomisaka, K.: "Accretion in Gravitationally Contracting Clouds" Publ. Astron. Soc. Japan. 48. L97-L101 (1996)
富坂,K.:“引力收缩云的吸积”出版。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Gardiner,L.T.: "N-body Simulations of the Small Magellanic Cloud and the Magellanic Stream" MNRAS. 278. 191-208 (1996)
Gardiner,L.T.:“小麦哲伦云和麦哲伦流的 N 体模拟”MNRAS。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOMISAKA Kohji其他文献

TOMISAKA Kohji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOMISAKA Kohji', 18)}}的其他基金

Astronomy in ALMA-Era Driven by Radiation Transfer Simulation
辐射传输模拟驱动的 ALMA 时代的天文学
  • 批准号:
    21244021
  • 财政年份:
    2009
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Formation of Our Galaxy Studied with Super-High Resolution Next-Generation Simulator
使用超高分辨率下一代模拟器研究银河系的形成
  • 批准号:
    17340059
  • 财政年份:
    2005
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical Study on Evolution from Magnetized Cloud to Protostar Using Three-Dimensional Nested Grid Method
三维嵌套网格法从磁化云到原恒星演化的数值研究
  • 批准号:
    14540233
  • 财政年份:
    2002
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mecanism of Outflow form Dynamically Contracting Molecular Cores
动态收缩分子核的流出机制
  • 批准号:
    11640231
  • 财政年份:
    1999
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gravitational Collapse of Interstellar Magnetized Clouds
星际磁化云的引力塌缩
  • 批准号:
    07640351
  • 财政年份:
    1995
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evolutions of Magnetized Supernova Remnants
磁化超新星遗迹的演化
  • 批准号:
    05640306
  • 财政年份:
    1993
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
  • 批准号:
    2340011
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
High-fidelity transonic buffet simulations on heterogenous exa-scale supercomputers
异构亿亿级超级计算机上的高保真跨音速抖振模拟
  • 批准号:
    22KF0421
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: OAC Core: ScaDL: New Approaches to Scaling Deep Learning for Science Applications on Supercomputers
协作研究:OAC 核心:ScaDL:在超级计算机上扩展深度学习科学应用的新方法
  • 批准号:
    2401246
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
  • 批准号:
    2229394
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
Beyond Standard Numerical Relativistic Hydrodynamics in Binary Neutron Stars: Cooperation of Machine Learning Toward Era of Gravitational Waves Astronomy and Exascale Supercomputers
双中子星中超越标准数值相对论流体动力学:机器学习在引力波时代的合作天文学和百亿亿次超级计算机
  • 批准号:
    23K03399
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tuning parallel applications on software-defined supercomputers
调整软件定义超级计算机上的并行应用程序
  • 批准号:
    LP200200805
  • 财政年份:
    2022
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Linkage Projects
Collaborative Research: OAC Core: ScaDL: New Approaches to Scaling Deep Learning for Science Applications on Supercomputers
协作研究:OAC 核心:ScaDL:在超级计算机上扩展深度学习科学应用的新方法
  • 批准号:
    2106661
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: ScaDL: New Approaches to Scaling Deep Learning for Science Applications on Supercomputers
协作研究:OAC 核心:ScaDL:在超级计算机上扩展深度学习科学应用的新方法
  • 批准号:
    2107511
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
A Productive Programming Environment for Supercomputers Using Distributed Shared Memory with Task Parallelism
使用具有任务并行性的分布式共享内存的超级计算机的高效编程环境
  • 批准号:
    19J14231
  • 财政年份:
    2019
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了