Study of Ultra-rapid Synthesis of Hydrogen from Methane by the Control of Non-linear Catalytic Reactions

非线性催化反应控制甲烷超快速合成氢气的研究

基本信息

  • 批准号:
    07405037
  • 负责人:
  • 金额:
    $ 20.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Synthesis of high quality liquid fuels from alternative carbon-containing 1ower valued resources is strongly expected recently. Especia11y, conversion of light, clean, and easily handled resources such as natura1 gas, associated gas, gaseous hydrocarbons produced during the course of petro1eum refinery, and even carbon dioxide into more valuable compounds are now regarded as the relief technology before the ultimate deve1opment of coal conversion technologies. The major conventional production method of H_2 is the steam reforming of saturated hydrocarbons, in particular natural gas or methane on the stabilized Ni catalyst supported on the ceramic carrier having a very low surface area, and the reaction is operated at a high temperature around 900゚C.In this study, the deve1opment in highly active catalysts for the reforming of methane with H_20, CO_2 and partial oxidation of methane was conducted to produce hydrogen and carbon monoxide with very high reaction rates. An Ni-based four-components catalysts, Ni-Ce_2O_3-Pt-Rh, supported on aluminawash coated ceramic fibers in a plate shape was suitable for the objective reaction. By combining the catalytic combustion of ethane or propane, methane conversion was markedly enhanced, and a high space-time yield of syngas, 25,000mol/l・h was obtained at a catalyst temperature of 700゚C or furnace temperature of 500゚C.The extraordinary high flow rate conditions as a contact time of 3 m-sec by using a monolithic shape of catalyst bed without back Pressure. Under the reaction conditions of partia1 oxidation reforming and steam reforming with the excess partial pressure, the deactivation of the catalyst was not observed.
从低价值的含碳替代资源中合成高质量的液体燃料是最近非常有希望的事情。特别是将轻、清洁、易处理的资源,如天然气、伴生气、炼油过程中产生的气态碳氢化合物,甚至二氧化碳转化为更有价值的化合物,现在被认为是煤炭转化技术最终发展之前的缓解技术。传统的制氢方法主要是饱和碳氢化合物,特别是天然气或甲烷在陶瓷载体上负载的稳定镍催化剂上水蒸气重整制氢,反应在900゚C左右高温下进行。以铝灰包覆陶瓷纤维为载体的镍基四组分催化剂Ni-Ce_2O_3-Pt-Rh适合于目标反应。在催化剂温度为700゚C或炉膛温度为500゚C的条件下,采用无背压的整体式催化剂床层,在接触时间为3m-s的超高流量条件下,甲烷转化率显著提高,在催化剂温度为700mol/L·h的条件下,合成气的时空产率可达25000mol/g.h。在超压部分氧化重整和水蒸气重整的反应条件下,没有观察到催化剂失活。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tomoyuki Inui: "Ultra-Rapid Synthesis of Syngas by the Catalytic Reforming of Methane Enhanced by In-situ Heat Supply through Combustion" Korean J.Chem.Eng.14. 441-444 (1997)
Tomoyuki Inui:“通过燃烧原位供热增强甲烷催化重整超快速合成合成气”韩国 J.Chem.Eng.14。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomoyuki Inui: "Catalytic Combustion of Natural Gas as the Role of On-site Heat Supply in Rapid Catalytic CO_2-H_2O Reforming of Methane" Catal.Today. 26. 295-302 (1995)
Tomoyuki Inui:“天然气催化燃烧作为现场供热在甲烷快速催化 CO_2-H_2O 重整中的作用”Catal.Today。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Inui: "Highly Effective Conversion of Carbon Dioxide to Valuable Compounds on Composite Catalysts" Catalysis Today. 29. 329-337 (1996)
T.Inui:“在复合催化剂上高效地将二氧化碳转化为有价值的化合物”《今日催化》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomoyuki Inui: "Pergamon Publisher" Proc. of the Second International Conference on Carbon Dioxide Removal, (1995)
干智之:《佩加蒙出版社》Proc.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomoyuki Inui, Kotaro Ichino, Isao Matsuoka, Tatsuya takeguchi, Shinji Iwamoto, Shu-Bin Pu: "Ultra-Rapid Synthesis of Syngas by the Catalytic Reforming of Methane Enhanced by In-situ Heat Supply through Combustion and Sei-ichi Nishimoto" Korean J.Chem.Eng
Tomoyuki Inui、Kotaro Ichino、Isao Matsuoka、Tatsuya takeguchi、Shinji Iwamoto、Shu-Bin Pu:“燃烧原位供热增强甲烷催化重整超快速合成合成气”韩国 J
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INUI Tomoyuki其他文献

INUI Tomoyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INUI Tomoyuki', 18)}}的其他基金

Development of Highly Active Metallosilicate Catalysts for Propane Aromatization
高活性丙烷芳构化金属硅酸盐催化剂的研制
  • 批准号:
    02505006
  • 财政年份:
    1990
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (A)

相似海外基金

Revolutionising Electrolysers for Low-Cost Green Hydrogen Production
革新电解槽以实现低成本绿色制氢
  • 批准号:
    IM240100216
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Mid-Career Industry Fellowships
Solar-powered methanol conversion for on-demand hydrogen production
太阳能甲醇转化用于按需制氢
  • 批准号:
    DE240100810
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Discovery Early Career Researcher Award
Hydrogen Production from Waste - HyWay
废物制氢 - HyWay
  • 批准号:
    EP/Y036751/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Research Grant
HyWay: Hydrogen Production from Waste
HyWay:利用废物制氢
  • 批准号:
    EP/Y036921/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Research Grant
Hydrogen production from waste - HyWay
利用废物制氢 - HyWay
  • 批准号:
    EP/Z000289/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Research Grant
A Solar Photoelectrochemical Cell for Unbiased Hydrogen Production
用于无偏产氢的太阳能光电化学电池
  • 批准号:
    DE240100660
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
  • 批准号:
    2336465
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Hydrogen Production from Waste
废物制氢
  • 批准号:
    EP/Y036859/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Research Grant
Anionic Exchange Membrane water ELectrolysis for highLY efficIenTcy sustAinable, and clean Hydrogen production (AEMELIA)
阴离子交换膜水电解实现高效、可持续、清洁的氢气生产 (AEMELIA)
  • 批准号:
    10109547
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    EU-Funded
I-Corps: Electrolyzers for Green Hydrogen Production Using Reverse Osmosis Membranes
I-Corps:使用反渗透膜生产绿色氢气的电解槽
  • 批准号:
    2347951
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了