CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
基本信息
- 批准号:2336465
- 负责人:
- 金额:$ 64.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2029-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Reversible solid oxide cells are devices that can switch between two opposite operating modes for hydrogen production and power generation. These devices can potentially revolutionize the way hydrogen is made. Despite the promise, though, use of these devices faces significant challenges due to fast degradation of the cell under prolonged operation. This Faculty Early Career Development (CAREER) award supports research aiming to understand the complex degradation mechanisms within reversible solid oxide cells. By overcoming these challenges, the technology can enable cost-effective use of hydrogen as a clean fuel in industries and the heavy-duty transportation sector. Utilizing hydrogen as a long-term energy storage solution, it also promotes the integration of renewable energy sources into the grid. This research spans multiple disciplines such as solid mechanics, electrochemistry, and advanced imaging. In alignment with UMass Lowell's mission as a Minority Serving Institution, the project seeks to encourage inclusivity by engaging underrepresented groups in energy engineering research and education, fostering a more diverse and inclusive workforce in the field.The rapid degradation in reversible solid oxide cells during electrolysis mode, caused by delamination failure at the oxygen electrode/electrolyte interface, is commonly associated with the buildup of oxygen partial pressure. Significant scientific challenges persist in fully comprehending the mechanisms responsible for the reduced degradation observed under reversible modes, especially with a bilayer oxygen electrode configuration. This research aims to bridge the existing knowledge gap by investigating the intricate interactions between mechanical and chemical stresses at the oxygen electrode-electrolyte interface under dynamic operating conditions, utilizing integrated mechano-electro-chemical approaches. The research will attempt to unravel the complex dynamics of crack initiation and propagation within 3D heterogeneous microstructures of oxygen electrodes from advanced full-field X-ray imaging technique. Through rigorous coupling of model and experiment approaches, the contributions of material variations and structural geometry modifications to performance improvements will be delineated. These findings will make a marked impact on the design of new oxygen electrodes and development of protocols for safe operation of reversible solid oxide cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可逆固体氧化物电池是一种可以在制氢和发电两种相反的操作模式之间切换的设备。这些装置可能会彻底改变制造氢气的方式。尽管前景看好,但由于电池在长时间运行下迅速退化,这些设备的使用面临着巨大的挑战。该学院早期职业发展(CALEAR)奖支持旨在了解可逆固体氧化物电池内复杂降解机制的研究。通过克服这些挑战,该技术可以在工业和重型运输部门以经济高效的方式使用氢气作为清洁燃料。利用氢气作为长期的储能解决方案,还可以促进可再生能源并入电网。这项研究横跨多个学科,如固体力学、电化学和高级成像。与马萨诸塞州大学洛厄尔分校作为少数群体服务机构的使命相一致,该项目寻求通过在能源工程研究和教育中吸收代表不足的群体来鼓励包容性,在该领域培养更多样化和更具包容性的劳动力。可逆固体氧化物电池在电解模式下的快速降解,由氧电极/电解液界面的分层故障引起,通常与氧分压的建立有关。重大的科学挑战仍然是充分理解在可逆模式下观察到的减少降解的机制,特别是在双层氧电极配置的情况下。本研究旨在利用机械-电化学综合方法,研究动态操作条件下氧电极-电解液界面机械应力和化学应力之间的复杂相互作用,以弥合现有的知识鸿沟。这项研究将试图用先进的全场X射线成像技术来揭示氧电极三维非均匀微结构中裂纹萌生和扩展的复杂动力学。通过模型和实验方法的严格耦合,将描述材料变化和结构几何修改对性能改进的贡献。这些发现将对新型氧电极的设计和可逆固体氧化物电池安全运行协议的开发产生显著影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinfang Jin其他文献
The performance of syngas-fueled solid oxide fuel cell predicted by a Reduced Order Model (ROM): Pressurization and flow-pattern effects
通过降阶模型 (ROM) 预测合成气燃料固体氧化物燃料电池的性能:加压和流型效应
- DOI:
10.1016/j.jpowsour.2018.10.015 - 发表时间:
2018 - 期刊:
- 影响因子:9.2
- 作者:
Xinfang Jin;S. Singh;A. Verma;Brandon Ohara;A. Ku;Kevin Huang - 通讯作者:
Kevin Huang
Toward High Energy Density Redox Targeting Flow Batteries with a Mushroom-Derived Electrolyte
使用蘑菇衍生电解质实现高能量密度氧化还原靶向液流电池
- DOI:
10.1115/1.4054697 - 发表时间:
2022 - 期刊:
- 影响因子:2.5
- 作者:
Joseph Egitto;T. Gokoglan;Shyam K. Pahari;J. Bolibok;S. Aravamuthan;Fuqiang Liu;Xinfang Jin;P. Cappillino;Ertan Agar - 通讯作者:
Ertan Agar
Understanding Power Enhancement of SOFC by Built-in Chemical Iron Bed: A Computational Approach
了解通过内置化学铁床增强 SOFC 的功率:一种计算方法
- DOI:
10.1149/2.0071711jes - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xinfang Jin;Meng Guo;R. White;Kevin Huang - 通讯作者:
Kevin Huang
A Finite Length Cylinder Model for Mixed Oxide-Ion and Electron Conducting Cathodes Suited for Intermediate-Temperature Solid Oxide Fuel Cells
适用于中温固体氧化物燃料电池的混合氧化物-离子和电子导电阴极的有限长度圆柱体模型
- DOI:
10.1149/2.1011606jes - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xinfang Jin;Jie Wang;Lon;R. White;Kevin Huang - 通讯作者:
Kevin Huang
The viability of implementing hydrogen in the Commonwealth of Massachusetts
在马萨诸塞州实施氢能的可行性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Brian Hammerstrom;C. Niezrecki;Kelly L. Hellman;Xinfang Jin;Michael B. Ross;J. H. Mack;Ertan Agar;J. Trelles;Fuqiang Liu;Fanglin Che;David Ryan;Madhava S. Narasimhadevara;Mary Usovicz - 通讯作者:
Mary Usovicz
Xinfang Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinfang Jin', 18)}}的其他基金
Collaborative Research: A New Class of Chemical Potential Driven Plug Flow Membrane Reactors for Combined Gas Separation and Direct Natural Gas Conversion
合作研究:用于组合气体分离和直接天然气转化的新型化学势驱动平推流膜反应器
- 批准号:
1924096 - 财政年份:2019
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
- 批准号:
2328117 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
Unraveling critical neutrino interaction uncertainties with the upgraded T2K experiment
通过升级的 T2K 实验揭示关键的中微子相互作用的不确定性
- 批准号:
24K17065 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
From Mystery to Clarity: Unraveling the Exchange Rate Dynamics in Emerging Market Economies
从神秘到清晰:揭开新兴市场经济体的汇率动态
- 批准号:
24K16404 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
- 批准号:
502588 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
CAREER: Unraveling the evolutionary history of toothed whale acoustic communication
职业:揭开齿鲸声音通讯的进化史
- 批准号:
2335991 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Continuing Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
- 批准号:
2328119 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
RAPID: Unraveling rates of wind erosion and potential dust emission post Smokehouse Creek Fire in Texas
RAPID:揭示德克萨斯州烟屋溪火灾后风蚀和潜在粉尘排放的速度
- 批准号:
2427344 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant