SANE: Visual Analytics for Event-Based Diffusion on Networks

SANE:网络上基于事件的扩散的可视化分析

基本信息

项目摘要

Wider research context: Visual Analytics (VA) showed its potential in communicating and investigating information diffusion processes over networks. Diffusion processes are highly dynamic and stochastic phenomena. To this end, VA needs to tackle two challenges: representing the progression on the underlying dynamic network structure and capturing the uncertainty of the process. The majority of existing VA approaches approximate the problem by imposing a discrete time structure to the input data and disregarding uncertainties. Objectives: By focusing on the real-time coordinates of the individual propagation events (hence, event-based), we better approximate real-world interactions, which, in turn, improves confidence in the analysis and prediction results. However, this greatly increases the complexity of the problem from both an algorithmic and methodological perspective, and requires a revision of the existing paradigms for the representation of event-based uncertain networks. We call this problem "VA of Event-based Information Diffusion with Uncertainty". We aim to (i) provide a data-task characterization of the information diffusion domain in VA with a typology of the representation of uncertainty on event-based networks, (ii) contribute the current state-of-the-art of temporal graph layout algorithms to improve their accessibility and introduce specific layout strategies to let the underlying diffusion process to shape the final network representation, and (iii) establish a seamless workflow for the visualization of event-based diffusion processes, to serve as a common ground and inspiration for further research in this field. Approach: We base our design methodology on the nested model for visualization design and validation by Munzner et al. And the Design Triangle (Data-Users-Tasks paradigm) by Miksch et al. For the data-task characterization of the domain, we refer to the work by Kerracher et al. About validation and construction of task taxonomies. To validate our findings, we will resort to experimental studies through algorithmic validation, case studies with experts on real-world datasets, and user studies. Innovation: We strive to be among the first to systematically explore the design space of VA for event-based information diffusion with uncertainty. We investigate promising but currently under-represented research trends in VA with innovative solutions and approaches, to contribute to the current body of knowledge in the field and open new and exciting research questions. Primary researchers involved: This proposal puts together two renowned European research groups in Visual Analytics. Alessio Arleo acts as PI and is Post-Doc researcher in VA group at TU Wien; Prof. Silvia Miksch (co-PI) is Prof. in VA at TU Wien. The Co-Applicant from the University of Cologne, under the WEAVE research policy, is Prof. Tatiana Landesberger von Antburg, Prof. in Visualization.
更广泛的研究背景:视觉分析(VA)显示了其在交流和研究网络上的信息传播过程方面的潜力。扩散过程是高度动态和随机的现象。为此,退伍军人管理局需要解决两个挑战:表示底层动态网络结构的进展和捕获过程的不确定性。现有的大多数VA方法通过对输入数据施加离散时间结构并忽略不确定性来近似该问题。目标:通过关注单个传播事件的实时坐标(因此,基于事件),我们可以更好地近似真实世界的交互,这反过来又提高了分析和预测结果的可信度。然而,从算法和方法论的角度来看,这大大增加了问题的复杂性,并且需要修改现有的基于事件的不确定网络的表示范式。我们将这一问题称为基于事件的不确定性信息扩散问题。我们的目标是(I)用基于事件的网络上的不确定性表示的类型学来描述VA中的信息扩散域的数据-任务特征,(Ii)贡献当前最新的时态图布局算法以提高其可访问性,并引入特定的布局策略来让潜在的扩散过程塑造最终的网络表示,以及(Iii)为基于事件的扩散过程的可视化建立一个无缝的工作流程,作为该领域进一步研究的共同点和启发。方法:我们的设计方法基于Munzner等人的用于可视化设计和验证的嵌套模型。和Miksch等人的设计三角(数据-用户-任务范例)。对于领域的数据任务描述,我们参考Kerracher等人的工作。关于任务分类的验证和构建。为了验证我们的发现,我们将通过算法验证、与真实世界数据集专家的案例研究和用户研究来进行实验研究。创新:我们努力成为系统探索基于事件的不确定性信息传播的VA设计空间的先行者之一。我们用创新的解决方案和方法调查退伍军人管理局有希望但目前代表不足的研究趋势,为该领域当前的知识体系做出贡献,并提出新的令人兴奋的研究问题。主要研究人员参与:这项提议将视觉分析领域的两个著名的欧洲研究小组结合在一起。Alessio Arleo担任PI,是TU Wien退伍军人事务部的博士后研究员;Silvia Miksch教授(联合PI)是TU Wien退伍军人事务部的教授。根据编织研究政策,科隆大学的共同申请者是可视化教授Tatiana Landesberger von Antburg。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Tatiana Landesberger von Antburg其他文献

Professorin Dr.-Ing. Tatiana Landesberger von Antburg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Tatiana Landesberger von Antburg', 18)}}的其他基金

Pairwise Visual Comparison of Directed Acyclic Graphs: A Human-Computer Interaction Perspective
有向无环图的成对视觉比较:人机交互视角
  • 批准号:
    283588368
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Visual Analytics Methods for Modeling in Medical Imaging
医学成像建模的可视化分析方法
  • 批准号:
    202945761
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于多幅图象的Visual Hull重构及表面属性建模算法研究
  • 批准号:
    60373031
  • 批准年份:
    2003
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Promoting Metacognition in Visual Analytics
职业:促进视觉分析中的元认知
  • 批准号:
    2340539
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
  • 批准号:
    10827649
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Visual Analytics for Exploration and Hypothesis Generation Using Highly MultiplexedSpatial Data of Tissues and Tumors
使用组织和肿瘤的高度多重空间数据进行探索和假设生成的可视化分析
  • 批准号:
    10743329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Visual analytics for time-dependent data
时间相关数据的可视化分析
  • 批准号:
    RGPIN-2018-05508
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Using data augmentation, active learning, and visual analytics for learning with limited examples on mobility data sets
使用数据增强、主动学习和可视化分析,通过移动数据集的有限示例进行学习
  • 批准号:
    DGECR-2022-00386
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Guided Analytics for the Visual Exploration of Higher Dimensional Data
高维数据可视化探索的引导分析
  • 批准号:
    RGPIN-2022-03894
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
OAC Core: A Machine Learning Assisted Visual Analytics Approach for Understanding Flow Surfaces
OAC Core:一种用于理解流表面的机器学习辅助视觉分析方法
  • 批准号:
    2104158
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interactive Techniques for Personal Visual Analytics
个人视觉分析的交互技术
  • 批准号:
    RGPIN-2017-03984
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Guidance in Visual Analytics through Mixed-Initiative and Implicit Interaction
通过混合主动和隐式交互进行可视化分析的指导
  • 批准号:
    RGPIN-2021-04353
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了