Visual Analytics Methods for Modeling in Medical Imaging
医学成像建模的可视化分析方法
基本信息
- 批准号:202945761
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Medical imaging plays an important role in clinical practice, for example in treatment planning or computer-aided diagnosis. In this respect, segmentation of medical images is a necessary prerequisite. Frequently used segmentation algorithms are based on statistical shape models (SSMs). By modeling an organ’s shape variability, they enable segmentation of organs which can not be segmented using image intensities only. For building an SSM, models have to be selected that fit the high-dimensional training data well. Due to the lack of prior information on the data, standard models are frequently chosen. However, they do not necessarily describe the data in an optimal way. A poor choice of the model is not apparent until the segmentation algorithm is evaluated. Visual analytics methods can provide valuable tools for supporting this modeling process.The aim of this project is to develop new Visual Analytics methods for fitting SSMs in medical image segmentation. Our approach combines interactive data visualization, data analysis and model steering in all stages of the process. We follow a “closed-loop” concept with feedback loops allowing for refining models interactively. In this way, the user is provided with a deeper insight into the correspondence between data and model result. As an outcome, better models for segmentation of organs in medical images will be created.
医学成像在临床实践中发挥着重要作用,例如在治疗计划或计算机辅助诊断中。在这方面,医学图像的分割是一个必要的先决条件。常用的分割算法是基于统计形状模型(SSM)。通过对器官的形状可变性进行建模,它们能够分割仅使用图像强度无法分割的器官。为了构建SSM,必须选择能够很好地拟合高维训练数据的模型。由于缺乏数据的先验信息,通常选择标准模型。然而,它们不一定以最佳方式描述数据。在对分割算法进行评估之前,模型的不良选择并不明显。可视化分析方法可以为支持这一建模过程提供有价值的工具。本项目的目的是开发新的可视化分析方法,用于在医学图像分割中拟合SSM。我们的方法结合了交互式数据可视化,数据分析和模型转向的所有阶段的过程。我们遵循一个“闭环”的概念,允许交互式地改进模型的反馈回路。通过这种方式,用户可以更深入地了解数据和模型结果之间的对应关系。作为一个结果,更好的模型分割的器官在医学图像将被创建。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual Analytics for model-based medical image segmentation: Opportunities and challenges
- DOI:10.1016/j.eswa.2013.03.006
- 发表时间:2013-09
- 期刊:
- 影响因子:0
- 作者:T. V. Landesberger;S. Bremm;M. Kirschner;S. Wesarg;Arjan Kuijper
- 通讯作者:T. V. Landesberger;S. Bremm;M. Kirschner;S. Wesarg;Arjan Kuijper
Opening up the “black box” of medical image segmentation with statistical shape models
使用统计形状模型打开医学图像分割的“黑匣子”
- DOI:10.1007/s00371-013-0852-y
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:von Landesberger T;Andrienko G;Andrienko N;Bremm S;Kirschner M;Wesarg S;Kujper A.
- 通讯作者:Kujper A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Tatiana Landesberger von Antburg其他文献
Professorin Dr.-Ing. Tatiana Landesberger von Antburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Tatiana Landesberger von Antburg', 18)}}的其他基金
Pairwise Visual Comparison of Directed Acyclic Graphs: A Human-Computer Interaction Perspective
有向无环图的成对视觉比较:人机交互视角
- 批准号:
283588368 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
SANE: Visual Analytics for Event-Based Diffusion on Networks
SANE:网络上基于事件的扩散的可视化分析
- 批准号:
527250730 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Fundamental research on the development of science teaching methods using Learning Analytics
使用学习分析开发科学教学方法的基础研究
- 批准号:
23K02469 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
developing and validating customized machine learning and data analytics methods for mining cricket
开发和验证采矿板球的定制机器学习和数据分析方法
- 批准号:
2885595 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325196 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Methods and Computation for Sports Analytics
体育分析的统计方法和计算
- 批准号:
RGPIN-2019-03971 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
- 批准号:
10364433 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Data analytics-based tools and methods to enhance self-regulated learning
基于数据分析的工具和方法,以增强自我调节学习
- 批准号:
DP220101209 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
Decentralized Data Analytics and Optimization Methods for Physical Asset Management
实物资产管理的去中心化数据分析和优化方法
- 批准号:
RGPIN-2020-05477 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
explainable AI, Data Analytics and Industrial Engineering Methods for Primary Care
用于初级保健的可解释的人工智能、数据分析和工业工程方法
- 批准号:
RGPIN-2019-05522 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
- 批准号:
10542758 - 财政年份:2022
- 资助金额:
-- - 项目类别: