Directionality-Aware Cohesive Subgraph Search over Directed Graphs
有向图上的方向感知内聚子图搜索
基本信息
- 批准号:DP220103731
- 负责人:
- 金额:$ 34.25万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2022
- 资助国家:澳大利亚
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Searching cohesive subgraphs around a set of user-specified seed vertices in big graphs has many applications including cybersecurity, crime detection, social marketing and public health. This project aims to investigate directionality-aware search of cohesive subgraphs over directed graphs by designing effective models and developing efficient and scalable algorithms. This project expects to address key challenges and lay scientific foundations for searching big directed graphs. The expected outcomes include novel models, computing paradigms, algorithms, indexing techniques, and distributed solutions. The success of the project will not only provide technological breakthroughs but also benefit the development of key industries in Australia
在大图中围绕一组用户指定的种子顶点搜索内聚子图有许多应用,包括网络安全,犯罪检测,社会营销和公共卫生。本计画旨在研究有向图上具方向性的内聚子图搜寻,设计有效的模型,并发展有效且可扩充的演算法。该项目旨在解决关键挑战,并为搜索大有向图奠定科学基础。预期的成果包括新的模型,计算范式,算法,索引技术和分布式解决方案。该项目的成功不仅将提供技术突破,还将有利于澳大利亚重点行业的发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A/Prof Lijun Chang其他文献
A/Prof Lijun Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('A/Prof Lijun Chang', 18)}}的其他基金
Advanced search of cohesive subgraphs in big graphs
大图中内聚子图的高级搜索
- 批准号:
FT180100256 - 财政年份:2019
- 资助金额:
$ 34.25万 - 项目类别:
ARC Future Fellowships
Efficient Cohesive-Subgraph Search over Large Graphs
大图上的高效内聚子图搜索
- 批准号:
DE150100563 - 财政年份:2015
- 资助金额:
$ 34.25万 - 项目类别:
Discovery Early Career Researcher Award
相似海外基金
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Discovery Projects
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Standard Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Continuing Grant
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
$ 34.25万 - 项目类别:
Continuing Grant