Study on Representations of Algebras and Derived Categories

代数表示及其派生范畴的研究

基本信息

  • 批准号:
    09640014
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We define cotilting bimodule complexes, and develop the derived duality theory to deal with case of non-commutative Noetherian algebras. We show that cotilting bimodule complexes contain all invective indecomposable modules. This property is similar to residuality of dualizing complexes. Furthermore, we give a "Morita duality theorem" for derived categories. Applying the above to the cases of Gorenstein and Auslander-Gorenstein rings, that are generalizations of commutative Gorenstein rings, we prove that if $M$ is a left $R$-module of invective dimension $n$ which is equal to the invective dimension of $R$, then the last term $E^n(M)$ in a minimal invective resolution of $M$ appears in the Last term of a minimal invective resolution of $R$. In particular, we obtain that if $R$ is Auslander-Gorenstein, then $E^n(M)$ has essential socle.Moreover, We have the following related results :1) e give a condition that a blow-up whose center is an equi-multiple ideal is a macaulayfication. And … More we give a equivalent condition for a Serre conjecture concerning intersection multiplicities, and study symbolic powers of prime ideals with respect to the above. We find a relation between Adams operation and localized Chern character, and prove the positivity of Dutta multiplicity in characteristic 0 (K.Kurano).2) We give a characterization for self-infectivity of rings by using quotient categories which are induced from Lambek torsion theory. And, using Morita duality theory, we find a condition that a projective indecomposable module is injective (M.Hoshino).3) e treat a quantum harmonic oscillator in thermal equilibrium with any systems in certain classes of bosons with infinitely many degrees of freedom. By using the expression of the ground state energy $E_{SB}$ of the spin-boson Hamiltonian, we show a necessary and sufficient condition with respect to a parameter $G\in [- 1, \, 0]$ such that a formula with $G$ attains to $E_{SB}$ (M.Hirokawa who was an investigator of this research until September 1998). Less
我们定义了余倾双模复形,并发展了导出对偶理论来处理非交换Noether代数的情况。证明了余倾双模复形包含所有可积不可分解模。这一性质类似于对偶化复形的残余性。此外,我们还给出了派生范畴的一个“Morita对偶定理”。将上述结果应用于Gorenstein环和Auslander-Gorenstein环,它们是交换Gorenstein环的推广,我们证明了如果$M$是一个左$R$-模,且它等于$R$的对合维度,则$M$的最小对合归结中的最后一项$E^n(M)$出现在$R$的最小对合归结的最后一项中.特别地,我们得到了如果$R$是Auslander-Gorenstein,则$E^n(M)$有本质解,并且得到了以下相关结果:1)给出了中心为等重理想的爆破是斑化的条件。和…给出了关于交重数的Serre猜想的一个等价条件,并研究了素数理想的符号幂。找到了亚当斯算子与局部陈特征标之间的关系,并证明了特征0(K.Kurano)中duta重数的正性。2)利用由Lambek挠理论导出的商范畴,给出了环的自感染性的一个刻画。并且,利用Morita对偶理论,我们得到了投射不可分解模是内射的条件(M.Hoshino)。3)e处理与具有无限多个自由度的某些类玻色子的任何系统处于热平衡状态的量子谐振子。利用自旋玻色子哈密顿量的基态能量E{SB}$的表达式,我们证明了[-1,\,0]$中参数$G的一个充要条件,使得一个含有$G的公式达到$E{SB}$(M.Hirokawa,他一直是这项研究的研究者,直到1998年9月)。较少

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuhiko Kurano: "The positivity of intersection multiplicities and symbolic powers of prime ideals" Compositio Math.(to appear).
Kazuhiko Kurano:“相交多重性的正性和素数理想的象征力量”Compositio Math.(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun-ichi Miyachi: "Cohen-Macaulay approximations and noetherian algebra" to appear in Comm.in Algebra.
Jun-ichi Miyachi:“Cohen-Macaulay approximations and noetherian algebra”出现在 Comm.in Algebra 中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuo Hoshino: "Injective pairs in pefect rings" to appear in Osaka J.Math.
Mitsuo Hoshino:“完美环中的内射对”出现在 Osaka J.Math 中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun-ichi Miyachi: "Cohen-Macaulay approximations and noetherian algebra" Comm. in Algebra. 26. 2181-2190 (1998)
Jun-ichi Miyachi:“Cohen-Macaulay 近似和诺特代数”Comm。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun-ichi Miyachi: "Derived Categories and Morita Duality Theory" J.Pure and Applied Algebra. 128. 153-170 (1998)
Jun-ichi Miyachi:“派生范畴和森田对偶理论”J.Pure and Applied Algebra。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYACHI Jun-ichi其他文献

MIYACHI Jun-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYACHI Jun-ichi', 18)}}的其他基金

Study of subcategories of triangulated categories and derived equivalences of algebras
三角范畴的子范畴和代数的导出等价性的研究
  • 批准号:
    22540042
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of perfect complexes over algebras and their properties
代数上的完美复形及其性质的研究
  • 批准号:
    16540012
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Invariant on Derived Categories over Algebras
代数派生范畴不变量的研究
  • 批准号:
    12640013
  • 财政年份:
    2000
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Structural analysis of the ribosome nascentpeptide-chain complex of mammalian mitochondria
哺乳动物线粒体核糖体新生肽链复合物的结构分析
  • 批准号:
    18K06054
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Assembly and misassembly of mitochondrial respiratory chain Complex I
线粒体呼吸链复合物 I 的组装和错误组装
  • 批准号:
    nhmrc : GNT1125390
  • 财政年份:
    2017
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Project Grants
The role of accessory subunits and assembly factors in the biogenesis of respiratory chain complex I
辅助亚基和组装因子在呼吸链复合物 I 生物发生中的作用
  • 批准号:
    nhmrc : 1068056
  • 财政年份:
    2014
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Project Grants
Analysis of respiratory chain complex assembly in mitochondrial disorders
线粒体疾病中呼吸链复合物组装的分析
  • 批准号:
    25461539
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Single Chain Complex Vaccines and Protective Immunity
单链复合疫苗和保护性免疫
  • 批准号:
    7515045
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
Single Chain Complex Vaccines and Protective Immunity
单链复合疫苗和保护性免疫
  • 批准号:
    7005250
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
Biogenesis of Respiratory Chain Complex I and Analysis of Assembly Defects in Patients with Mitochondrial Disease
线粒体疾病患者呼吸链复合物 I 的生物发生及组装缺陷分析
  • 批准号:
    nhmrc : 280615
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    NHMRC Project Grants
Structure and function of two novel respiratory chain complex from Gram-positive thermophilic bacteria
革兰氏阳性嗜热菌两种新型呼吸链复合物的结构和功能
  • 批准号:
    10680617
  • 财政年份:
    1998
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了