The relation between the configuration space and the root systems
配置空间与根系统的关系
基本信息
- 批准号:09640057
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. (Joint work with T.Takayama (Kobe Univ.)) The system of partial differential equations for the hypergeometric function of type (3,6) lives on the configuration space of 6 points on the projective plane. We treated two kinds of compactifications of the configuration space, studied the relations between these two spaces and constructed local fundamental solutions of the system above.2. (Joint work with M.Yoshida (Kyushu Univ.)) Naruki's cross ratio variety is regarded as a compactification of the configuration space of 6 points on the projective plane. Unsig the properties of this variety, we studied the configuration space of 6 lines (= the configuration space of 6 points) on the real projective plane. In particular, we gave an interpretation of the classification of 6 lines arrangements on the real projective plane in terms of the root system of type E_6.3. I studied the relationship between the configurations of 7 lines the real projective plane and the root system of type E_7. It is known that there are mutually different 11 kinds of 7 lines arrangements on the real projective plane. I gave an interpretation of the classification in terms of the root system of type F_7.4. (Joint work with T.Fukui (Mukogawa Women's Univ.)) We studied the relationship between the configurations of 8 lines the real projective plane and the root system of type F_5. Our aim is the classification of 8 lines arrangements on the real projective plane, which is an open problem. We constructed a lot of 8 lines arrangements by a combinatorial argument.
1.(与高山先生(科比大学)合作)(3,6)型超几何函数的偏微分方程组存在于射影平面上6点的位形空间上。讨论了位形空间的两种紧化,研究了这两种紧化之间的关系,构造了系统的局部基本解.(与吉田先生(九州大学)合作)Naruki交比簇被看作是射影平面上6点位形空间的紧化。利用这一簇的性质,研究了真实的射影平面上的6条直线的位形空间(= 6点的位形空间)。特别地,我们用E_6.3型根系解释了真实的射影平面上6条直线排列的分类。研究了E_7型根系与真实的射影平面上7条直线的构形之间的关系。已知在真实的射影平面上有11种互不相同的7线排列。本文以F_7.4型根系为例,对这一分类作了解释。(与T.福井(Mukogawa女子大学)合作)本文研究了F_5型根系与真实的射影平面上8条直线的构形之间的关系。我们的目标是对真实的射影平面上的8条直线排列进行分类,这是一个公开的问题。我们通过组合论证构造了大量的8线排列。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J. Sekiguchi and M. Yoshida: "W(E_6)-action on the configuration space of six points of the real projective plane" Kyushu J, Math.51. 297-354 (1997)
J. Sekiguchi 和 M. Yoshida:“W(E_6)-实射影平面六点配置空间上的作用”九州 J,Math.51。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Sekiguchi: "Configurations of seven lines on the real projective plane and the root system of type E_7." J.Math.Soc.Japan.(To appear).
J.Sekiguchi:“真实射影平面上的七条线的配置和E_7类型的根系。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Fukui and J.Sekiguchi: "Eight lines arrangement on the real projective plane and the root system of type E8" Proc.Third Asian Tech.Conf in Math.377-388 (1998)
T.Fukui 和 J.Sekiguchi:“实射影平面上的八线排列和 E8 型根系” Proc.Third Asian Tech.Conf in Math.377-388 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Sekiguchi: "Configurations of seven lines on the real projective plane and the root system of type E7" Journal of Mathematical Society of Japan. (出版予定).
J.Sekiguchi:“实投影平面上的七条线的配置和E7型根系统”日本数学会杂志(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Fukui and J. Sekiguchi: "A remark on labelled 8 lines on the real projective plane" 姫路工業大学研究報告. 8. 1-11 (1997)
T. Fukui 和 J. Sekiguchi:“关于真实投影平面上标记的 8 条线的评论”姬路工业大学研究报告。 8. 1-11 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEKIGUCHI Jiro其他文献
SEKIGUCHI Jiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEKIGUCHI Jiro', 18)}}的其他基金
Study on Saito free divisors and uniformization equations
Saito自由因子和均匀化方程的研究
- 批准号:
23540077 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on geometry related to Weyl groups and root systems
与Weyl群和根系相关的几何学研究
- 批准号:
20540066 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Actions of semisimple groups and Weyl groups and research on representations
半单群和Weyl群的作用及表示研究
- 批准号:
17540013 - 财政年份:2005
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Orbits of Semisimple Lie Algebras and Representations
半简单李代数及其表示的轨道研究
- 批准号:
15540013 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on spaces with algebraic group action and representation theory
代数群作用空间与表示论的研究
- 批准号:
13640039 - 财政年份:2001
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for the spaces with actions of algebraic groups or Weyl groups
具有代数群或Weyl群作用的空间的研究
- 批准号:
11640043 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A Configuration-Space Interrogation Approach to the Understanding and Design of Critical Load-Bearing Structures Susceptible to Buckling
用于理解和设计易受屈曲影响的关键承载结构的配置空间询问方法
- 批准号:
1926672 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
- 批准号:
1839358 - 财政年份:2018
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
- 批准号:
1839370 - 财政年份:2018
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Topology of configuration space model for viewing flow lines of flexible molecules
用于观察柔性分子流线的构型空间模型拓扑
- 批准号:
17K05366 - 财政年份:2017
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MPS: BIO: Theory, Algorithms, Software, for Predicting Geometric Entropy-driven Virus Assembly, using Multiscale Configuration Space Atlasing and Combinatorial Enumeration
MPS:BIO:使用多尺度配置空间图谱和组合枚举来预测几何熵驱动的病毒组装的理论、算法、软件
- 批准号:
1122541 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
Topology of the embedding spaces via configuration space integrals, operads and the calculus of functors
通过配置空间积分、操作数和函子微积分实现嵌入空间的拓扑
- 批准号:
23840015 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: A Formal Theory of Robust Numerical Computational Geometry and Its Validation on Configuration Space Construction
协作研究:鲁棒数值计算几何的形式理论及其对构型空间构造的验证
- 批准号:
0304955 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
Collaborative Research: A Formal Theory of Robust Numerical Computation Geometry and Its Validation on Configuration Space Construction
协作研究:鲁棒数值计算几何的形式理论及其对配置空间构造的验证
- 批准号:
0306214 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant