Study of control theory of the fixed point sets on spheres
球面上不动点集控制理论研究
基本信息
- 批准号:09640110
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to study the following three : (1) (P(G), L(G))-controlled equivariant surgery, cobordism and representation theories and a theory to control isotropy subgroups appearing on manifolds ; (2) Dress'induction of the equivariant cobordism theory of equivariant framed normal maps ; (3) the injection maps IndィイD3G(/)HィエD3 among various finite groups H ⊂ G ; and determine the G-fixed point manifolds of smooth G-actions on spheres for Oliver groups G. We obtained the following results in the research. (1) We proved a deleting-inserting theorem of fixed point components on disks and spheres for Oliver Groups. In a joint work K. Pawalowski, we proved an extension theory of (P(G), L(G))-vector bundles on finite G-CW complexes. Using the equivariant thickening theory with this extension theory, we developed a theory to control isotropy subgroups on disks. (2) We proved that Bak-Morimoto's surgery obstruction group is a Mackey functor on which a Green functor acts, and algebraic Dress'induction works for the obstruction group. In addition, we proved that the cobordism invariance of the surgery obstruction and show that geometric Dress'induction works. (3) In joint works with T. Sumi and M. Yanagihara, we studied the induction maps IndィイD3G(/)HィエD3 for various finite groups H ⊂ G, we constructed (P(G), L(G))-matched pairs and (P(G), L(G))-gap modules for many G. Putting all this together, we determined the G-fixed point manifolds of smooth G-actions on spheres for various Oliver groups G.
本文研究了以下三个问题:(1)(P(G),L(G))-控制的等变手术,协边与表示理论,以及控制流形上出现的各向同性子群的理论;(2)等变框架法映射的等变协边理论的Dress归纳;(3)有限群H <$G之间的注入映射Ind <$D ~ 3G(/)H <$D ~ 3;确定了球面上奥利弗群G的光滑G作用的G不动点流形.我们在研究中获得了以下结果。(1)证明了圆和球面上奥利弗群的不动点分支的一个去插入定理。在一项联合工作中,K。Pawalowski等人的工作,证明了有限G-CW复形上的(P(G),L(G))-向量丛的扩张定理。利用等变稠化理论和这种扩张理论,我们发展了一个控制圆盘上各向同性子群的理论。(2)我们证明了Bak-Morimoto的外科阻塞群是一个Mackey函子,一个绿色函子作用于该Mackey函子上,并且代数Dress的归纳法适用于该阻塞群.此外,我们还证明了手术阻塞的配边不变性,并证明了几何Dress归纳法的有效性。(3)与T. Sumi和M. Yanagihara等人研究了各种有限群H <$G的归纳映射Ind <$D ~ 3G(/)H <$<$D ~ 3,构造了许多G的(P(G),L(G))-匹配对和(P(G),L(G))-间隙模.综合以上结果,我们确定了球面上各种奥利弗群G的光滑G作用的G不动点流形。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Morimoto: "A geometric quadratic form of 3-dimensional normal maps" Topology and its Applications. 83. 77-102 (1998)
M.Morimoto:“3 维法线贴图的几何二次形式”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Morimoto and K. Pawatowski: "Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles"Osaka Journal of Mathematics. 36. 767-781 (1999)
M. Morimoto 和 K. Pawatowski:“具有 G 向量丛的有限可收缩 G-CW 复形的等变楔和构造”《大阪数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Morimoto: "A geometric quadratic form of 3-dimensional normal maps"Topology and its Applications. 83. 77-102 (1998)
M. Morimoto:“3 维法线贴图的几何二次形式”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Morimoto and K.Pawatowski: "Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles"Osaka Journal Math.. (to appear).
M.Morimoto 和 K.Pawatowski:“具有 G 向量丛的有限可收缩 G-CW 复合体的等变楔和构造”Osaka Journal Math..(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
E.Laitineu-M.Morimoto: "Finite groups with smooth one fixed point actious on spheres" Forum Mathematicum. 10. 479-520 (1998)
E.Laitineu-M.Morimoto:“具有光滑的一个固定点作用于球体的有限群”数学论坛。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORIMOTO Masaharu其他文献
MORIMOTO Masaharu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORIMOTO Masaharu', 18)}}的其他基金
Study of group actions on manifolds by psedo-inverse limit systems of equivariant framed maps
等变框架映射伪逆极限系统研究流形上的群作用
- 批准号:
18K03278 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of stability of fixed point sets in equivariant manifolds
等变流形中不动点集的稳定性研究
- 批准号:
26400090 - 财政年份:2014
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of intersections and links on non-simply-connected equivariant manifolds and K-theory
非单连通等变流形的交和连线与K理论的研究
- 批准号:
22540085 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Smith's Problem and Laitinen's Conjecture
史密斯问题和莱蒂宁猜想的研究
- 批准号:
18540086 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of equivariant homology surgery theory and its applications
等变同源手术理论及其应用研究
- 批准号:
15540076 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of coupled K-theory and its applications to non-linear actions
耦合K理论及其在非线性作用中的应用研究
- 批准号:
12640072 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




