Multimodal AI-based pain measurement in intermediate care patients in the postoperative period
基于多模态人工智能的中级护理患者术后疼痛测量
基本信息
- 批准号:527765259
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of the project is the automated and continuous measurement of pain intensity in patients in postoperative inpatient care using multimodal sensors and artificial intelligence methods, which will be further developed and validated for clinical use. This results in a novel system for real-time pain monitoring, which relieves medical staff from routine tasks and can alert experts if necessary. The project is divided into the following phases: "Testing", Phase I+II: "Translation & Data Collection" and Phase III: "Validation". Testing: The multimodal measurement infrastructure will be developed in a laboratory environment. For this purpose, the necessary infrared camera technology (for capturing facial expressions and gestures), biosignal amplifiers and data synchronization and recording technology will be installed and a laboratory room comparable to a room in the intensive care unit of the University Hospital Ulm will be set up, i.e. with an identical intensive care bed, the same arrangement of the bed with respect to the wall, ceiling lights and/or medical technology in the form of "dummies", etc. Phase I: The measurement infrastructure is integrated into a patient room of the Interdisciplinary Operative Intensive Care Medicine of the University Hospital Ulm. Subsequently, the multimodal data collection with 84 all-round oriented patients takes place - the "gold standard" (AI ground truth) here is the subjective pain perception as well as external observation, whereby in each case a baseline measurement is carried out before the planned operation as well as a continuous measurement over 48 hours after the operation - with recording of the pain in the course of time including the dosage of the medicinal pain therapy. In parallel, algorithms for the multimodal detection of pain, which have been developed in the laboratory, are being adapted to the new requirements. This includes the application of Deep Transfer Learning to adapt computer vision procedures from color to NIR video, adaptation of procedures for real-time data analysis, and transfer learning to adapt pain detection models from our preliminary work to clinical conditions, requirements, and pain modalities. Deep learning enables learning of feature extraction optimized for the application and has great potential when combined with transfer learning. Phase II: In a further sample of not omnidirectional patients (N=42) multimodal data will be collected and analyzed as well, the "gold standard" here is "only" third-party observation. Phase III: A demonstrator will be developed and validated with a further group of patients (N=10) who are both omnidirectionally and non-omnidirectionally oriented. An algorithm will detect pain in real time. An acceptance survey of the developed demonstrator by medical staff will also be conducted. Results will be published in journals and presented at conferences.
该项目的目的是使用多模态传感器和人工智能方法自动连续测量术后住院患者的疼痛强度,并将进一步开发和验证用于临床。这就产生了一种用于实时疼痛监测的新型系统,它使医务人员从日常工作中解脱出来,并在必要时提醒专家。该项目分为以下阶段:“测试”,第一阶段+第二阶段:“翻译和数据收集”和第三阶段:“验证”。测试:多模式测量基础设施将在实验室环境中开发。为此,必要的红外摄像机技术(用于捕捉面部表情和手势),将安装生物信号放大器和数据同步和记录技术,并将建立一个与乌尔姆大学医院重症监护室的房间相当的实验室,即具有相同的重症监护床,床相对于墙壁的相同布置,天花板灯和/或“假人”形式的医疗技术等。第一阶段:将测量基础设施集成到乌尔姆大学医院的跨学科手术重症监护医学的病房中。随后,对84名全方位患者进行多模式数据收集-“黄金标准”(人工智能地面实况)这里是主观疼痛感知以及外部观察,在每种情况下,在计划的操作之前进行基线测量,以及在操作之后48小时内进行连续测量-并记录在一段时间内的疼痛,包括药物疼痛治疗的剂量。与此同时,在实验室中开发的多模式疼痛检测算法正在适应新的要求。这包括应用深度迁移学习来调整计算机视觉程序,从彩色到NIR视频,调整实时数据分析程序,以及迁移学习来调整疼痛检测模型,从我们的初步工作到临床条件,要求和疼痛模式。深度学习能够学习针对应用优化的特征提取,并且在与迁移学习结合时具有巨大的潜力。第二阶段:在另一个非全方位患者样本(N=42)中,也将收集和分析多模态数据,此处的“金标准”是“仅”第三方观察。第三阶段:将开发演示器,并使用全方位和非全方位定向的另一组患者(N=10)进行验证。一个算法将检测真实的时间疼痛。医务人员还将对开发的演示器进行验收调查。研究结果将发表在期刊上并在会议上发表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Ayoub Al-Hamadi其他文献
Professor Dr.-Ing. Ayoub Al-Hamadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Ayoub Al-Hamadi', 18)}}的其他基金
Advancing reliability and specificity of automatic multimodal recognition of pressure and heat pain intensit
提高压力和热痛强度自动多模式识别的可靠性和特异性
- 批准号:
193061652 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
A robust, reliable and multimodal AI system for pain quantification
用于疼痛量化的强大、可靠的多模式人工智能系统
- 批准号:
532219633 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Development and systematic validation of a system for contactless, camera-based measurement of the heart rate variability
基于摄像头的非接触式心率变异性测量系统的开发和系统验证
- 批准号:
502438143 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Implicit mobile human-robot communication for spatial action coordination with context-specific semantic environment modeling
通过上下文特定的语义环境建模实现空间动作协调的隐式移动人机通信
- 批准号:
502483052 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
The impact of using AI-powered technology for lie detection in negotiations.
在谈判中使用人工智能技术进行谎言检测的影响。
- 批准号:
468478819 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
- 批准号:JCZRLH202500512
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
应用于AI芯片的先进封装TSV关键技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
- 批准号:
10114149 - 财政年份:2024
- 资助金额:
-- - 项目类别:
SME Support
ProtFunAI: AI based methods for functional annotation of proteins in crop genomes
ProtFunAI:基于人工智能的作物基因组蛋白质功能注释方法
- 批准号:
BB/Y514044/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
- 批准号:
10099265 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Using AI based modelling to drive the engineering of biology
使用基于人工智能的建模来推动生物学工程
- 批准号:
BB/Y514056/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant