A robust, reliable and multimodal AI system for pain quantification

用于疼痛量化的强大、可靠的多模式人工智能系统

基本信息

项目摘要

The project deals with the development of a robust, reliable and multimodal AI system for pain quantification based on the X-ITE database acquired in the previous project. The main focus is to improve the quality of treatment and the associated strengthening of the health and life quality of patients with dementia during the recovery and monitoring phase after surgical interventions. It also aims to enable better treatment of pain and its causes by supporting and relieving medical staff in pain assessment through automated real-time pain monitoring and by enabling more precise, individual and situation-specific analgesia. Especially in dementia patients, pain recognition is considerably more difficult, as the affected persons often forget their pain suffering or have lost the ability to verbally express it. Due to these cognitive limitations, external assessment instruments should be used for pain recognition for these patients, since self-report as the gold standard does not provide reliable information here. Regarding automatic pain recognition, various challenges arise in terms of data (objective recording of pain intensity, variations in appearance, facial expression, head pose, illumination, or partial occlusions) and algorithms (interpretation of facial expressions, limited availability of samples, choice of model, and unequal distribution of classes). These challenges are addressed in the following sub-objectives: 1. The use of deep neural networks and transfer learning with large existing in-the-wild databases to increase robustness to variances in appearance, illumination, etc., 2. evaluating previously unused modalities of body pose, thermal images, and side views of the head, as well as complex methods for fusing different modalities, 3. combining deep learning and temporal evaluation, for example, by using temporal convolutional networks (TCN) or transformers, and 4. investigating the achievable quality of measurement when sensing is limited to subsets of modalities (e.g., skin conductance only or noncontact sensing only). Continuous prediction of pain intensities will be enabled using regression. By using deep neural networks, transformers and Long Short-Term Memory (LSTM) in combination with transfer learning, as well as additional labels evaluating pain expressed by facial expressions, a significant improvement of pain recognition in terms of reliability, accuracy and robustness is expected, which should form the basis for transferring the system into clinical practice.
该项目涉及基于先前项目中获得的X-ITE数据库开发一个强大,可靠和多模式的疼痛量化AI系统。主要重点是提高治疗质量,并在手术干预后的恢复和监测阶段加强痴呆症患者的健康和生活质量。它还旨在通过自动化实时疼痛监测支持和减轻医务人员的疼痛评估,并通过实现更精确,个性化和特定情况的镇痛来更好地治疗疼痛及其原因。特别是痴呆患者,疼痛识别更加困难,因为患者经常忘记疼痛,或者丧失了口头表达的能力。由于这些认知上的局限性,应该使用外部评估工具来识别这些患者的疼痛,因为自我报告作为金标准不能提供可靠的信息。关于自动疼痛识别,在数据(疼痛强度的客观记录、外观变化、面部表情、头部姿势、照明或部分遮挡)和算法(面部表情的解释、样本的有限可用性、模型的选择和类的不均匀分布)方面出现了各种挑战。这些挑战在以下次级目标中得到解决:使用深度神经网络和迁移学习与现有的大型野外数据库,以增加对外观,照明等变化的鲁棒性,2.评估先前未使用的身体姿势、热图像和头部侧视图的模态,以及用于融合不同模态的复杂方法,3.结合深度学习和时间评估,例如通过使用时间卷积网络(TCN)或变换器,以及4.调查当感测限于模态子集时可实现的测量质量(例如,仅皮肤电导或仅非接触感测)。将使用回归实现疼痛强度的连续预测。通过使用深度神经网络,transformers和长短期记忆(LSTM)结合迁移学习,以及评估面部表情表达的疼痛的额外标签,预计疼痛识别在可靠性,准确性和鲁棒性方面会有显着改善,这应该成为将系统转移到临床实践的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Ayoub Al-Hamadi其他文献

Professor Dr.-Ing. Ayoub Al-Hamadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Ayoub Al-Hamadi', 18)}}的其他基金

Advancing reliability and specificity of automatic multimodal recognition of pressure and heat pain intensit
提高压力和热痛强度自动多模式识别的可靠性和特异性
  • 批准号:
    193061652
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multimodal AI-based pain measurement in intermediate care patients in the postoperative period
基于多模态人工智能的中级护理患者术后疼痛测量
  • 批准号:
    527765259
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development and systematic validation of a system for contactless, camera-based measurement of the heart rate variability
基于摄像头的非接触式心率变异性测量系统的开发和系统验证
  • 批准号:
    502438143
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Implicit mobile human-robot communication for spatial action coordination with context-specific semantic environment modeling
通过上下文特定的语义环境建模实现空间动作协调的隐式移动人机通信
  • 批准号:
    502483052
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The impact of using AI-powered technology for lie detection in negotiations.
在谈判中使用人工智能技术进行谎言检测的影响。
  • 批准号:
    468478819
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
  • 批准号:
    2310323
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
  • 批准号:
    EP/Y015886/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Economic & Reliable DC Microgrids
经济的
  • 批准号:
    EP/Y034619/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
  • 批准号:
    2339596
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了