High-and Low-temperature expansion for the spin statistical systems using the finite lattice method
使用有限格法的自旋统计系统的高低温展开
基本信息
- 批准号:08640494
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using the finite lattice method we calculated the high order terms of the various types of the parameter expansions for various kinds of spin systems.We first calculated the low-temperature expansion series of the free energy, the magnetization and the magnetic susceptibility in the q-state Potts model in two dimensions for all of q=5-50, where the system exhibits first order phase transition to the 41st order in the expansion, parameter. We also applied the finite lattice method to the large-q expansion of the same system and obtained the series for the up to 6th order energy cumulants to the 23rd order in 1/√q. Analyzing the series, we found that the values of the free energy and the latent heat coincide in very high precision with those of the exact solutions at the critical point and the series for the specific heat gives converging results in the accuracy of a few percent even for q=5, where the correlation length of the system amount to several thousands of the lattice spacing and other methods such as the Monte Carlo simulations cannot give any meaningful result.Secondly we calculated the low-temperature expansion series for the three kinds of quantities concerning the interface width for the Ising model in three dimensions and for the Absolute value SOS model and Discrete Gaussian model on the square lattice and on the triangular lattice, respectively, to 17th, 23rd, 22nd, 24th and 22nd order in the expansion parameter for the respective model. Assuming the critical exponent of the each quantity that is predicted by the renormalization group arguments, we obtained from the series the value of the roughening transition point for each model. They agree quite well with the results of the Monte Carlo simulation for the former three models and they give new prediction for the latter two models.
用有限格子方法计算了各种自旋系统的各种参数展开式的高阶项,首次计算了Q=5-50时Q态Potts模型的自由能、磁化强度和磁化率的低温展开式,其中系统在展开式参数上表现出一阶到四十一阶的相变.我们还将有限格子方法应用于同一系统的大Q展开,得到了1/√Q中高达23阶的6阶能量累积量的级数。对级数的分析发现,自由能和潜热的值与临界点的精确解有很高的精度一致,比热的级数即使在Q=5的情况下也给出了几个百分点的收敛结果。其次,我们计算了三维伊辛模型、正方形晶格上绝对值SOS模型和三角形晶格上绝对值SOS模型和离散高斯模型的三种界面宽度的低温展开级数,分别到相应模型展开参数的第17、23、22、24和22阶。假设重整化群参数所预测的每个量的临界指数,我们从级数中得到每个模型的粗化转变点的值。它们与前三种模型的蒙特卡罗模拟结果吻合较好,并对后两种模型给出了新的预测。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Arisue, K.Tabata: "Large-q expansion of the specific heat for the two-dimensional q-state Potts model"NuPhysical Review E. Vol.59. 186-188 (1999)
H.Arisue、K.Tabata:“二维 q 态 Potts 模型比热的大 q 展开”NuPhysical Review E. Vol.59。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Arisue, K.Tabata: "Low-Temperature Series for the Potts Model by Finite-Lattice Method"Nuclear Physics B[Proc.Suppl.]. 47. 739-742 (1996)
H.Arisue、K.Tabata:“有限格法 Potts 模型的低温系列”核物理 B[Proc.Suppl.]。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Arisue: "Low-temperature expansion of the surface width in the D=3 Ising model"Nuclear Physics B[Proc.Suppl.]. 47. 743-746 (1996)
H.Arisue:“D=3 Ising 模型中表面宽度的低温膨胀”《核物理 B》[Proc.Suppl.]。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Arisue: "Surface width of the Solid-On-Solid models" Nuclear Physics B(Proc.Suppl.). 63A-C. 649-651 (1998)
H.Arisue:“固体对固体模型的表面宽度”核物理 B(Proc.Suppl.)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroaki Arisue: "Low-temperature Series for the Square Lattice Potts model by the Inproved Finite-Lattice Method" Journal of Physics A:Mathematical and General. 30. 3313-3327 (1997)
Hiroaki Arisue:“通过改进的有限格子方法获得方格子 Potts 模型的低温级数”物理学杂志 A:数学与综合。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARISUE Hiroaki其他文献
ARISUE Hiroaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARISUE Hiroaki', 18)}}的其他基金
Research of the Spin Statistical System by the High Order Calculation of the High and Low-Temperature Expansion Series
高低温展开级数高阶计算的自旋统计系统研究
- 批准号:
16540353 - 财政年份:2004
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Series expansion research of the phase transition for the spin statistical systems
自旋统计系统相变的级数展开研究
- 批准号:
12640382 - 财政年份:2000
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Approximation and mixing times in the ferromagnetic Potts model
铁磁 Potts 模型中的近似和混合时间
- 批准号:
EP/G066604/1 - 财政年份:2010
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
Quantum algorithms, the tutte polynomial and the potts model
量子算法、tutte 多项式和 potts 模型
- 批准号:
344423-2009 - 财政年份:2010
- 资助金额:
$ 1.28万 - 项目类别:
Postgraduate Scholarships - Doctoral
Quantum algorithms, the tutte polynomial and the potts model
量子算法、tutte 多项式和 potts 模型
- 批准号:
344423-2009 - 财政年份:2009
- 资助金额:
$ 1.28万 - 项目类别:
Postgraduate Scholarships - Doctoral