Series expansion research of the phase transition for the spin statistical systems

自旋统计系统相变的级数展开研究

基本信息

  • 批准号:
    12640382
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

The finite lattice method is the most efficient method to generate the high-and low-temperature expansion series for the statistical system in two dimensions, but it had not been overwhelming the diagramatic method in three dimensions. In 2000 the head investigator H. Arisue and his collaborator T. Fujiwara (Professor of Kitasato University) developed a new algorithm of the finite lattice method, which enables us to generate the high-temperature series for the Ising model in three dimensions in much higher order than the previous finite lattice method and the diagramatic method. In fact we extended the high-temperature series for the specific heat of the Ising model in three dimensions from the previous 26th order to 46th order in the inverse temperature using the new algorithm in 2000 and 2001 and to 50th order in 2002. We also extended the high-temperature series for the magnetic susceptibility of the same model to 32nd order by the new algorithm from 25th order given by the diagramatic method. In 2003 we applied the algorithm to the high-temperature expansion of the second moment correlation length to 32nd order. These calculations were done partly by the workstation introduced in 2000 and partly by the calculation server at Yukawa Institute for Fundamental Physics, Kyoto University and the massively parallel supercomputer CP-PACS, Tuskuba University. The obtained series for the second moment correlation length were combined with the series for the magnetic susceptibility, giving gave the estimate of the phase transition point of the model in the accuracy of 7. digits, which coincides the estimate by the recent large-scaled numerical simulation, and also giving the estimate for the critical exponents of the magnetic susceptibility and the correlation length in the accuracy of 5 digits, which is the most precise when compared with the estimate by the various other methods.
有限格点方法是生成二维统计系统高低温展开式的最有效方法,但在三维空间中还没有压倒热力学方法。2000年,首席研究员H. Arisue和他的合作者T. Fujiwara(北里大学教授)开发了一种新的有限格点方法算法,该算法使我们能够以比以前的有限格点方法和数值方法高得多的阶数生成三维Ising模型的高温序列。事实上,我们延长了高温系列的比热的伊辛模型在三维从以前的第26阶到第46阶的逆温度在2000年和2001年使用新的算法和第50阶在2002年。我们还用新算法将同一模型的高温磁化率序列从解析法给出的25阶扩展到32阶。2003年我们将该算法应用于二阶矩关联长度的高温扩展到32阶。这些计算部分由2000年引入的工作站完成,部分由京都大学汤川基础物理研究所的计算服务器和Tuskuba大学的大规模并行超级计算机CP-PACS完成。将得到的二阶矩关联长度序列与磁化率序列相结合,给出了模型相变点的估计,精度为7。给出了磁化率临界指数和相关长度的5位精度估计,与其它方法的估计结果相比,该估计精度最高。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Arisue, T.Fujiwara: "New algorithm of the high-temperature expansion for the Ising model in three dimensions"Nuclear Physics B [Proceedings Supplements]. (2004)
H.Arisue、T.Fujiwara:“三维伊辛模型高温展开的新算法”《核物理 B》[论文集补充]。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Arisue, T.Fujiwara: "New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions"Physical Review E. 67. 66109-66112 (2003)
H.Arisue、T.Fujiwara:“三维伊辛模型高温膨胀的有限格子法新算法”物理评论 E. 67. 66109-66112 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Arisue, T.Fujiwara, K.Tabata: "Higher orders of the high-temperature expansion for the Ising model in three dimensions"Nuclear Physics B. Vol. 129&130(Proc. Suppl). 855-857 (2004)
H.Arisue、T.Fujiwara、K.Tabata:“三维伊辛模型的高温膨胀的高阶”核物理 B.卷。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Arisue, K.Tabata: "First order phase transition of the q-state Potts model in two dimensions"Non-Perturbative Methods and Lattice QCD(World Scientific). 233-241 (2001)
H.Arisue、K.Tabata:“二维 q 态 Potts 模型的一阶相变”非微扰方法和格子 QCD(世界科学)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Arisue: "Large-q expansion of the correlation length in the two-dimensional q-state Potts model"Nuclear Physics B. Vol.83(Proc. Suppl). 679-681 (2000)
H.Arisue:“二维 q 状态 Potts 模型中相关长度的大 q 展开”《核物理 B. 第 83 卷》(Proc. Suppl)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARISUE Hiroaki其他文献

ARISUE Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARISUE Hiroaki', 18)}}的其他基金

Research of the Spin Statistical System by the High Order Calculation of the High and Low-Temperature Expansion Series
高低温展开级数高阶计算的自旋统计系统研究
  • 批准号:
    16540353
  • 财政年份:
    2004
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-and Low-temperature expansion for the spin statistical systems using the finite lattice method
使用有限格法的自旋统计系统的高低温展开
  • 批准号:
    08640494
  • 财政年份:
    1996
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Renormalisation Group Interfaces in Tricritical Ising Model
三临界 Ising 模型中的重正化群接口
  • 批准号:
    EP/W010283/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Research Grant
Cluster Algebras, the Ising Model, and Affine Kazhdan-Lusztig Cells
簇代数、Ising 模型和仿射 Kazhdan-Lusztig 单元
  • 批准号:
    1949896
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Integrated information of a generalized Ising model
广义伊辛模型的综合信息
  • 批准号:
    540162-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Information Transfer of Sparse Connectivity using Granger Causality Analysis and the Ising Model
使用 Granger 因果分析和 Ising 模型的稀疏连接信息传输
  • 批准号:
    467902-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Quantitative Investigation of Network Externalities Based on Extended Ising Model
基于扩展Ising模型的网络外部性定量研究
  • 批准号:
    24653089
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Integrability and limit shapes in the two-dimensional Ising model and related models
二维伊辛模型及相关模型中的可积性和极限形状
  • 批准号:
    1208191
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Non-equilibrium Critical Phenomena in the Quantum Random Field Ising Model
量子随机场发射模型中的非平衡临界现象
  • 批准号:
    404037-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Non-equilibrium Critical Phenomena in the Quantum Random Field Ising Model
量子随机场发射模型中的非平衡临界现象
  • 批准号:
    404037-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Magnetic susceptibility of the 2D Ising model
二维伊辛模型的磁化率
  • 批准号:
    400477-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.37万
  • 项目类别:
    University Undergraduate Student Research Awards
A comparison of optimization schemes for the ising model
ising模型优化方案比较
  • 批准号:
    382043-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.37万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了