Non-linear cosmic structure formation in the mean-field approximation
平均场近似中的非线性宇宙结构形成
基本信息
- 批准号:528166846
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the formation of non-linear cosmic structures is important not only because the analysis of current and upcoming data depends on it, but also because these structures in reality as well as in simulations reveal signs of universality whose origin is unclear. Recently, a new analytic approach to non-linear structure formation in classical particle systems in and out of equilibrium has been developed, based on kinetic field theory (KFT). This approach avoids the shell-crossing problem of more conventional approaches by construction and thus allows to enter quite deeply into the non-linear regime even at low orders of perturbation theory. In addition, a mean-field approximation has been developed within KFT that reproduces non-linear power spectra of numerically simulated cosmic density fluctuations at the per-cent level in a wide range of wave numbers in the trans-linear and non-linear regimes. This mean-field approximation has so far been derived in a heuristic way. Motivated by its success, the present proposal aims at clarifying its foundations, placing it on a rigorous derivation, and extending it towards spectra of higher order, such as the bi- or trispectrum. The work programme foresees developing probability distributions for finding particles correlated with the mean density field in evolved ensembles of classical particles out of equilibrium under appropriately realistic approximations, averaging interaction terms in the generating functional of KFT with these probability distributions, and deriving power spectra, bispectra, and possibly trispectra. It further foresees studying how the Hubbard-Stratonovich transformation could be introduced into KFT in a cosmological context, and how this transformation could be used to further understand and develop the mean-field approximation to cosmic structure formation. This approach will also allow to extend studies of non-linear cosmic structures to non-standard cosmological models or theories of gravity.
理解非线性宇宙结构的形成是重要的,不仅因为对当前和即将到来的数据的分析依赖于它,而且因为这些结构在现实中以及在模拟中揭示了起源尚不清楚的普遍性的迹象。最近,一种新的分析方法,在经典粒子系统的非线性结构的形成和平衡的基础上,动力学场理论(KFT)已经开发。这种方法避免了壳交叉的问题,更传统的方法通过建设,从而允许进入相当深入的非线性制度,即使在低阶微扰理论。此外,平均场近似已开发内KFT再现非线性功率谱的数值模拟宇宙密度波动的百分之一级在广泛的波数范围内的trans-linear和非线性制度。到目前为止,这种平均场近似是以启发式的方式推导出来的。受其成功的动机,本建议的目的是澄清其基础,把它放在一个严格的推导,并将其扩展到更高的顺序,如双或三谱的光谱。该工作计划预计开发的概率分布找到粒子相关的平均密度场的经典粒子的演化合奏下适当的现实近似下的平衡,平均相互作用项的生成功能的KFT与这些概率分布,并推导出功率谱,bispectra,并可能trispectrum。它进一步预见研究如何在宇宙学背景下将Hubbard-Stratonovich变换引入KFT,以及如何使用这种变换来进一步理解和发展宇宙结构形成的平均场近似。这种方法还将允许将对非线性宇宙结构的研究扩展到非标准宇宙学模型或引力理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Matthias Bartelmann其他文献
Professor Dr. Matthias Bartelmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Matthias Bartelmann', 18)}}的其他基金
Kinetic Field Theory: Second-order perturbation theory
动场论:二阶微扰理论
- 批准号:
418152809 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Developing galaxy-cluster potentials into a cosmological diagnostic
将星系团势发展为宇宙学诊断
- 批准号:
346672789 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Joint, parameter-free reconstruction of the mass distribution in galaxy clusters from all available data sets
根据所有可用数据集联合、无参数重建星系团中的质量分布
- 批准号:
241898342 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Perturbations and observables in inhomogeneous cosmologies
非均匀宇宙学中的扰动和可观测量
- 批准号:
225630247 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Detailed analysis of a large, dedicated sample of HST clusters
HST 簇的大型专用样本的详细分析
- 批准号:
182811170 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Optimal filtering of three-dimensional, weak-lensing data
三维弱透镜数据的优化过滤
- 批准号:
195252990 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Gravitational flexion, its measurement and its application to galaxy clusters
引力弯曲、测量及其在星系团中的应用
- 批准号:
179826617 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Automatic detection of gravitational arcs in wide-area survey data, comparison of the observed and the theoretically expected arc abundance
自动检测广域测量数据中的引力弧,比较观测到的引力弧丰度与理论预期的引力弧丰度
- 批准号:
125319829 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Statistics of structures in the gravitational potential - a possible way to constrain halo populations without reference to mass
引力势结构的统计——一种在不参考质量的情况下约束晕圈群体的可能方法
- 批准号:
106639007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Detection and characterisation of dark-matter halos by gravitational shear and flexion; constraints on the non-linear cosmic structure growth
通过引力剪切和弯曲检测和表征暗物质晕;
- 批准号:
42389529 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
MIMO电磁探测技术与成像方法研究
- 批准号:40774055
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
统计过程控制图的设计理论及其应用
- 批准号:10771107
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
- 批准号:
MR/X036944/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant