Studies on Realistic Solutions to Theoretically Hard Problems
理论难题的现实解决方案研究
基本信息
- 批准号:10205207
- 负责人:
- 金额:$ 9.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study we have been engaged in several problems which were thought to be computationally Hard within the traditional framework of asymptotic analysis popular in the theory of algorithms. More concretely, we have studied the problem of designing optimal dot patterns for printing and that of clustering. For the former problem, we have noticed that the discrepancy theory can be applied to the problem. The discrepancy theory has been rigorously studied and is full of important theoretical results. Combining it with the notion of matching in the graph theory, we have succeeded in improving the performance of the solutions obtained. Since we also had satisfactory experimental results, we intend to submit the result to some journal. For the problem of clustering, we have applied an algorithmic approach to image query system On image database with good experimental results that exceed results by traditional Approaches. We are planning to summarize the results in a paper to be submitted to some International journal in near future.
在这项研究中,我们一直在从事的几个问题,被认为是计算困难的传统框架内流行的渐近分析理论的算法。更具体地说,我们研究了设计最佳印刷网点图案和聚类问题。对于前一个问题,我们已经注意到差异理论可以应用于该问题。差异理论已经得到了严格的研究,并充满了重要的理论成果。结合图论中匹配的概念,我们成功地提高了所获得的解决方案的性能。由于我们也有令人满意的实验结果,我们打算将结果提交给一些期刊。对于聚类问题,我们将一种算法方法应用于图像数据库上的图像查询系统,取得了较好的实验结果,优于传统方法的结果。我们计划在不久的将来将结果总结在一篇论文中提交给一些国际期刊。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. C. Nandy, T. Harayama, T. Asano: "Dynamically maintaining the widest k-dense corridor"Theoretical Computer Science. 255. 627-639 (2001)
S.C. Nandy、T. Harayama、T. Asano:“动态维持最宽的 k 密集走廊”理论计算机科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Asano: "Effective Use of Geometric Information for Clustering and Related Topics"IEICE Trans. on Fundamentals. (2000)
T. Asano:“有效利用几何信息进行聚类及相关主题”IEICE Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
今井、室田、浅野、茨木、小島: "離散構造とアルゴリズムV" 近代科学社, 250 (1998)
Imai、Murota、Asano、Ibaraki、Kojima:“离散结构和算法 V”Kindai Kagakusha,250(1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Asano, D. Z. Chen, N. Katoh, and T. Tokuyama: "Efficient Algorithms for Optimization-based Image Segmentation"11, 2. 145-166 (2001)
T. Asano、D. Z. Chen、N. Katoh 和 T. Tokuyama:“基于优化的图像分割的高效算法”11, 2. 145-166 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Asano: "Digital Halftoning Algorithm Based on Randon Space-Filling Curve" IEICE Trans.on Fundamentals. (1999)
T.Asano:“基于随机空间填充曲线的数字半色调算法”IEICE Trans.on 基础知识。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ASANO Tetsuo其他文献
ASANO Tetsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ASANO Tetsuo', 18)}}的其他基金
Development of Algorithmic Paradigms on Memory-Constrained Computation
内存受限计算的算法范式的发展
- 批准号:
23300001 - 财政年份:2011
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algorithms for Geometric Computational Problems Considering Constraints from Practice and Their Applications
考虑实践约束的几何计算问题算法及其应用
- 批准号:
19300002 - 财政年份:2007
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Formulating Digital Halftoning of Continuous-tone Images As Optimization Problem with Analysis of its Computational Complexity
将连续色调图像的数字半色调表述为优化问题并分析其计算复杂度
- 批准号:
10680344 - 财政年份:1998
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Computational Complexity and Efficient Implementation of Region Segmentation Problem of an Image under Various criteria
不同标准下图像区域分割问题的计算复杂度及高效实现研究
- 批准号:
08680382 - 财政年份:1996
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEVELOPMENT OF A GENERAL METHOD FOR DETECTING A SPECIFIED FAMILY OF CURVES IN A DIGITAL IMAGE
开发检测数字图像中特定曲线族的通用方法
- 批准号:
06680334 - 财政年份:1994
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
A STUDY ON GEOMETRIC TRANSFORMATION PRESERVING GRID POINTS AND ITS APPLICATIONS
保留网格点的几何变换及其应用研究
- 批准号:
04650331 - 财政年份:1992
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Development of Geometric Clustering Algorithms and Applications to VLSI Design
几何聚类算法的开发及其在 VLSI 设计中的应用
- 批准号:
01550295 - 财政年份:1989
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Travel: Student Travel Grant for 2023 Computational Geometry Week
旅行:2023 年计算几何周学生旅行补助金
- 批准号:
2321292 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Postgraduate Scholarships - Doctoral
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Discovery Grants Program - Individual
Visibility in Computational Geometry
计算几何中的可见性
- 批准号:
574590-2022 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
University Undergraduate Student Research Awards
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Computational Geometry from a Fine-Grained Perspective
AF:小:细粒度角度的计算几何
- 批准号:
2224271 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant
Problems in Discrete and Computational Geometry
离散和计算几何问题
- 批准号:
RGPIN-2020-04329 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of algorithms for problems in computational geometry
计算几何问题的算法设计与分析
- 批准号:
RGPIN-2021-03823 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Discovery Grants Program - Individual
Optimization Problems in Computational Geometry
计算几何中的优化问题
- 批准号:
RGPIN-2017-06385 - 财政年份:2022
- 资助金额:
$ 9.15万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




