AF: Small: Computational Geometry from a Fine-Grained Perspective
AF:小:细粒度角度的计算几何
基本信息
- 批准号:2224271
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many real-world problems require fast processing of large amounts of geometric data. Computational geometry is concerned with the design of efficient algorithms for solving such problems. Over the past four decades, a variety of algorithms have been developed for the most fundamental problems in the area, and in many cases, the amount of time used by these known algorithms are thought to be the best possible, or close to the best, in a fine-grained sense. Ideally, one would like to rigorously prove that no faster algorithm is possible, but unfortunately, such proofs are beyond reach under the current state of art. To circumvent this issue, researchers in theoretical computer science have recently turned to "conditional" proofs which assume certain unproved but believable hypotheses about the hardness of various "core" problems. The approach is to show that if a faster algorithm were to exist for the problem at hand, then we would get an unreasonably fast algorithm for one of the core problems, contradicting the hypotheses. In this project, the investigator will adopt this approach to better understand the fine-grained complexity of basic geometric problems. In addition, material from this project will be incorporated into courses on algorithms and computational geometry, and help in the training of several graduate students. The project will explore a variety of problems under this paradigm, about geometric optimization, geometric searching in low and moderate dimensions, static and dynamic geometric data structures, matching point clouds, etc. The main goal is to establish a web of new reductions between these geometric problems, as well as reductions from known core problems outside of geometry (such as 3SUM and shortest paths in graphs), in order to prove conditional lower bounds on the complexity of geometric problems. A parallel goal is to find better upper bounds, i.e., speed up existing algorithms, when possible. For example, one tool involves the use of algebraic decision trees. Conversely, geometric techniques might help researchers assess the believability of standard hypotheses, and new problems will be identified to enrich the interplay between computational geometry and other areas of algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多现实世界的问题需要快速处理大量的几何数据。计算几何学关注的是设计有效的算法来解决这些问题。在过去的四十年中,已经开发了各种算法来解决该领域中最基本的问题,并且在许多情况下,这些已知算法所使用的时间量被认为是最好的,或者在细粒度意义上接近最好。理想情况下,人们希望严格证明,没有更快的算法是可能的,但不幸的是,这样的证明是无法达到目前的艺术状态。为了规避这个问题,研究人员在理论计算机科学最近转向了“条件”证明,假设某些未经证实,但可信的假设的硬度各种“核心”问题。这种方法是为了表明,如果手头的问题存在一个更快的算法,那么我们将得到一个不合理的快速算法的核心问题之一,矛盾的假设。在这个项目中,研究者将采用这种方法来更好地理解基本几何问题的细粒度复杂性。此外,该项目的材料将纳入算法和计算几何课程,并帮助培训几名研究生。 该项目将探索在这种范式下的各种问题,关于几何优化、低维和中维的几何搜索、静态和动态几何数据结构、匹配点云等。主要目标是在这些几何问题之间建立一个新的约简网络,以及几何之外的已知核心问题的约简(如3SUM和图中的最短路径),以证明几何问题复杂性的条件下界。一个平行的目标是找到更好的上界,即,尽可能加快现有算法的速度。例如,一种工具涉及代数决策树的使用。相反,几何技术可以帮助研究人员评估标准假设的可信度,新的问题将被发现,以丰富计算几何和其他领域的算法之间的相互作用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simpler Reductions from Exact Triangle
精确三角形的更简单简化
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Timothy M. Chan;Yinzhan Xu
- 通讯作者:Yinzhan Xu
Finding Triangles and Other Small Subgraphs in Geometric Intersection Graphs
- DOI:10.48550/arxiv.2211.05345
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Timothy M. Chan
- 通讯作者:Timothy M. Chan
Minimum L_∞ Hausdorff distance of point sets under translation: Generalizing Klee's measure problem
平移点集的最小 L_Hausdorff 距离:推广克利测度问题
- DOI:10.4230/lipics.socg.2023.24
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chan, Timothy M.
- 通讯作者:Chan, Timothy M.
An Optimal Algorithm for Higher-Order Voronoi Diagrams in the Plane: The Usefulness of Nondeterminism
- DOI:10.48550/arxiv.2310.15363
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Timothy M. Chan;Pingan Cheng;Da Wei Zheng
- 通讯作者:Timothy M. Chan;Pingan Cheng;Da Wei Zheng
Fredman’s Trick Meets Dominance Product: Fine-Grained Complexity of Unweighted APSP, 3SUM Counting, and More
Fredman 的技巧与主导产品的结合:未加权 APSP、3SUM 计数等的细粒度复杂性
- DOI:10.1145/3564246.3585237
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chan, Timothy M.;Vassilevska Williams, Virginia;Xu, Yinzhan
- 通讯作者:Xu, Yinzhan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Chan其他文献
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Moore’s Paradox is not just another pragmatic paradox
- DOI:
10.1007/s11229-008-9403-x - 发表时间:
2008-10-15 - 期刊:
- 影响因子:1.300
- 作者:
Timothy Chan - 通讯作者:
Timothy Chan
Ultrafast disinfection of SARS-CoV-2 viruses
SARS-CoV-2 病毒的超快速消毒
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yang Xu;A. Chin;Haosong Zhong;Connie Lee;Yi Chen;Timothy Chan;Z. Fan;Molong Duan;Leo L. M. Poon;Mitch Guijun Li - 通讯作者:
Mitch Guijun Li
P-330 The third-generation genetic engineered mouse model of late-stage multiple myeloma
- DOI:
10.1016/s2152-2650(23)01948-1 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Jianhong Lin;Mohsin Maqbool;Kylin Emhoff;Tyler Alban;Hanna Hong;Eric Irons;Wanying Zhang;Rie Maeda;Sarah Ondrejka;Megan Nakashima;Faiz Anwer;Jason Valent;Jennifer Yu;Timothy Chan;Justin Lathia;Jianjun Zhao - 通讯作者:
Jianjun Zhao
Timothy Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Chan', 18)}}的其他基金
AF: Small: Fundamental Problems in Geometric Data Structures
AF:小:几何数据结构中的基本问题
- 批准号:
1814026 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Towards Simpler Algorithms in Computational Geometry
计算几何中更简单的算法
- 批准号:
9902027 - 财政年份:1999
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Complexity and Computational Social Choice
AF:小:复杂性和计算社会选择
- 批准号:
2006496 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Algorithmic Foundation and Framework for Subdivision Methods in Motion Planning and Computational Geometry
AF:小:运动规划和计算几何中细分方法的算法基础和框架
- 批准号:
2008768 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
- 批准号:
2041841 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: A Computational Lens on Participatory Democracy
AF:小:参与式民主的计算镜头
- 批准号:
2007080 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Computational Complexity Lower Bounds: Time, Space and Communication
AF:小:计算复杂度下限:时间、空间和通信
- 批准号:
2007462 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: A Computational Theory of Brain Function
AF:小:协作研究:脑功能的计算理论
- 批准号:
1910473 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Computational Complexity Theory and Circuit Complexity
AF:小:计算复杂性理论和电路复杂性
- 批准号:
1909216 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Algorithms for Fundamental Optimization Problems in Computational Geometry
AF:小:计算几何中基本优化问题的算法
- 批准号:
1909171 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant