Supersymmetric Gauge Theory and Superstring Geometry
超对称规范理论和超弦几何
基本信息
- 批准号:10209201
- 负责人:
- 金额:$ 5.44万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to study superstring theory and moduli spaces of supersymmetric gauge theories ('superstring geometry') by various mathematical and physical considerations. and verify the superstring duality in quantitative and rigorous manners.In 1998 (academic year), we derived the WDVV equations for some four-dimensional supersymmetric gauge theories, generalized related Donaldson-Witten invariants, and determined the Seiberg-Witten geometries in the cases with the gauge groups of the exceptional type. A rigorous description of the moduli spaces was also obtained by embedding them into M-theory.In 1999, we obtained the low-energy effective theories of the four-dimensional supersymmetric gauge theories with the exceptional-type flavor symmetries, and clarified its relation to five-dimensional theories. We also found a systematic method for analyzing D-branes on orbifold singularities of Calabi-Yau manifolds, and the generating function for the number of rational curv … More es in rational elliptic surfaces. Moreover, we systematically constructed the superconformal algebras in the AdS/CFT correspondence, which is related to the string duality.In 2000, we showed the dualities between some string junctions and the D-branes on del Pezzo surfaces in Calabi-Yau manifolds, and analyzed in detail the superconformal algebras related to the degenerated Calabi-Yau manifolds of the ADE type. We also obtained the exact correlation functions of the CFT with the AdS_3 target space and, using the AdS/CFT correspondence, clarified properties of the three-dimensional black hole and field theories on non-commutative geometries.In 2001, we found the prepotentials and Seiberg-Witten curves for the four-dimensional compactified models obtained from the six-dimensional non-critical string theory with the E_8 symmetry. We also derived rigorous properties about the operator product expansion for the AdS_3 CFT and the soliton scattering on non-commutative geometries.In this way, we obtained many useful and rigorous results about the superstring geometry and the string duality. Less
这项研究的目的是通过各种数学和物理考虑,研究超对称规格理论(“超串几何”)的超对称规定理论的模量空间。并验证定量和严格的举止的超音双重性。在1998年(学年),我们为某些四维超级对称理论的WDVV方程得出了WDVV方程,并确定了Seiberg-with的广义相关的Donaldson-Witten Infortiants,并确定了Seiberg-Withtenter-with Interications的情况。还通过将它们嵌入M理论来获得模量空间的严格描述。在1999年,我们获得了具有异常的型风味对称性的四维超级对称理论的低能量有效理论,并阐明了其与五维理论的关系。我们还发现了一种系统的方法,用于分析calabi-yau歧管的Orbifold奇异性上的D型晶体,以及用于理性曲线数量的生成函数…在有理椭圆形表面中更多的ES。 Moreover, we systematically constructed the superconformal algebras in the AdS/CFT correspondence, which is related to the string duality.In 2000, we showed the dualities between some string junctions and the D-branes on del Pezzo surfaces in Calabi-Yau manifolds, and analyzed in detail the superconformal algebras related to the degenerated Calabi-Yau manifolds of the ADE type.我们还获得了CFT与ADS_3目标空间的确切相关函数,并使用ADS/CFT对应关系,在2001年进行了三维黑洞和现场理论的澄清属性。我们还获得了有关ADS_3 CFT的操作产品扩展和非交通差异的孤子散射的严格属性。在这种方式上,我们获得了许多有关SuperString几何形状和字符串二元性的有用和严格的结果。较少的
项目成果
期刊论文数量(109)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
R-G. Cai: "Bekenstein bound, holography and brane cosmology in charged black Hole background"Class. Quantum Grav.. 18. 5429-5440 (2001)
R-G。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Ito: "A-D-E singularity and the Seiberg-Witten theory"Prog. Theor. Phys. Suppl.. 135. 94-108 (1999)
K. Ito:“A-D-E 奇点和 Seiberg-Witten 理论”Prog。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Mohri: "Kahler Mochlispace of a D-brane at Orbifold Singularities"Commun.Math.Physs.. 202. 669-699 (1999)
K.Mohri:“轨道奇点处 D 膜的 Kahler Mochlispace”Commun.Math.Physs.. 202. 669-699 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Mohri: "Closed Sub-monodromy problems, local mirror symmetry and branes on orbifolds"Rev. Math. Phys.. 13 No.6. 1-40 (2001)
K. Mohri:“闭子单峰问题、局部镜像对称和轨道折叠上的膜”Rev。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Hosomichi: "Free field appoach to string theory on AdS_3"Nucl. Phys. B. 598. 451-466 (2001)
K. Hosomichi:“AdS_3 上弦理论的自由场方法”Nucl。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATOH Yuji其他文献
SATOH Yuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATOH Yuji', 18)}}的其他基金
Study of gluon scattering amplitudes based on integrability in gauge-gravity(string) duality
基于规范重力(弦)二元性可积性的胶子散射振幅研究
- 批准号:
24540248 - 财政年份:2012
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of gauge/string duality based on integrability
基于可积性的规范/弦对偶性研究
- 批准号:
21740158 - 财政年份:2009
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Influence on prostate cancer of bone marrow stem cell (pre-adipocytes) :Comprehensive analysis of the signaling pathways
骨髓干细胞(前脂肪细胞)对前列腺癌的影响:信号通路综合分析
- 批准号:
19791115 - 财政年份:2007
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似国自然基金
拓扑场论和拓扑弦理论中的非微扰贡献
- 批准号:12375062
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路轨道平顺性动态弦诊断理论及控制方法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
闭弦场论中弦顶角及其对偶理论的研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
多撑杆类全铰接弦支网壳体系创新及设计分析理论研究
- 批准号:52278224
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
闭弦场论中弦顶角及其对偶理论的研究
- 批准号:12275184
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
相似海外基金
Topological structure in string field theory and the physics of multiple D-brane solutions
弦场论中的拓扑结构和多 D 膜解的物理
- 批准号:
25400253 - 财政年份:2013
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of D-brane and Black hole by nonperturbative formulation of string theory
用弦理论的非微扰公式分析 D 膜和黑洞
- 批准号:
20540253 - 财政年份:2008
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
String field theory and D-brane
弦场论和D-膜
- 批准号:
16540232 - 财政年份:2004
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the non-perturbative structure of string theory on the basis of string field theory
基于弦场论的弦论非微扰结构分析
- 批准号:
15540268 - 财政年份:2003
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of manifold of special holonomy and gauge theory/gravity correspondence
特殊完整流形几何与规范论/引力对应
- 批准号:
14540073 - 财政年份:2002
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)