Supersymmetric Gauge Theory and Superstring Geometry
超对称规范理论和超弦几何
基本信息
- 批准号:10209201
- 负责人:
- 金额:$ 5.44万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to study superstring theory and moduli spaces of supersymmetric gauge theories ('superstring geometry') by various mathematical and physical considerations. and verify the superstring duality in quantitative and rigorous manners.In 1998 (academic year), we derived the WDVV equations for some four-dimensional supersymmetric gauge theories, generalized related Donaldson-Witten invariants, and determined the Seiberg-Witten geometries in the cases with the gauge groups of the exceptional type. A rigorous description of the moduli spaces was also obtained by embedding them into M-theory.In 1999, we obtained the low-energy effective theories of the four-dimensional supersymmetric gauge theories with the exceptional-type flavor symmetries, and clarified its relation to five-dimensional theories. We also found a systematic method for analyzing D-branes on orbifold singularities of Calabi-Yau manifolds, and the generating function for the number of rational curv … More es in rational elliptic surfaces. Moreover, we systematically constructed the superconformal algebras in the AdS/CFT correspondence, which is related to the string duality.In 2000, we showed the dualities between some string junctions and the D-branes on del Pezzo surfaces in Calabi-Yau manifolds, and analyzed in detail the superconformal algebras related to the degenerated Calabi-Yau manifolds of the ADE type. We also obtained the exact correlation functions of the CFT with the AdS_3 target space and, using the AdS/CFT correspondence, clarified properties of the three-dimensional black hole and field theories on non-commutative geometries.In 2001, we found the prepotentials and Seiberg-Witten curves for the four-dimensional compactified models obtained from the six-dimensional non-critical string theory with the E_8 symmetry. We also derived rigorous properties about the operator product expansion for the AdS_3 CFT and the soliton scattering on non-commutative geometries.In this way, we obtained many useful and rigorous results about the superstring geometry and the string duality. Less
这项研究的目的是通过各种数学和物理考虑来研究超弦理论和超对称规范理论(超弦几何)的模空间。在1998年(学年),我们导出了一些四维超对称规范理论的WDVV方程,推广了相关的Donaldson-Witten不变量,并确定了例外型规范群情形下的Seiberg-Witten几何。1999年,我们得到了具有异常型味对称的四维超对称规范理论的低能有效理论,并阐明了它与五维理论的关系。我们还找到了一个系统的方法来分析Calabi-Yau流形的轨道奇点上的D-膜,以及有理曲线个数的生成函数。 ...更多信息 在有理椭圆曲面中。2000年,我们证明了Calabi-Yau流形中某些弦结与del Pezzo曲面上的D-膜之间的对偶关系,并详细分析了与ADE型退化Calabi-Yau流形相关的超共形代数。2001年,我们在E_8对称的六维非临界弦理论中得到了四维紧化模型的前势和Seiberg-Witten曲线。我们还导出了AdS_3连续傅里叶变换的算子乘积展开式和非对易几何上的孤子散射的严格性质,从而得到了超弦几何和弦对偶的许多有用的严格结果。少
项目成果
期刊论文数量(109)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
R-G. Cai: "Bekenstein bound, holography and brane cosmology in charged black Hole background"Class. Quantum Grav.. 18. 5429-5440 (2001)
R-G。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Mohri: "Closed Sub-monodromy problems, local mirror symmetry and branes on orbifolds"Rev. Math. Phys.. 13 No.6. 1-40 (2001)
K. Mohri:“闭子单峰问题、局部镜像对称和轨道折叠上的膜”Rev。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Hosomichi: "Free field appoach to string theory on AdS_3"Nucl. Phys. B. 598. 451-466 (2001)
K. Hosomichi:“AdS_3 上弦理论的自由场方法”Nucl。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.G. Cai: "(F1, D1, D3) bound state, its scaling limits and SL(2, Z) duality"Prog. Theor. Phys.. 104. 1073-1087 (2000)
R.G.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.G. Cai: "Lorentz transformation and light-like noncommutative SYM"JHEP. 0010. 036 (2000)
R.G.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATOH Yuji其他文献
SATOH Yuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATOH Yuji', 18)}}的其他基金
Study of gluon scattering amplitudes based on integrability in gauge-gravity(string) duality
基于规范重力(弦)二元性可积性的胶子散射振幅研究
- 批准号:
24540248 - 财政年份:2012
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of gauge/string duality based on integrability
基于可积性的规范/弦对偶性研究
- 批准号:
21740158 - 财政年份:2009
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Influence on prostate cancer of bone marrow stem cell (pre-adipocytes) :Comprehensive analysis of the signaling pathways
骨髓干细胞(前脂肪细胞)对前列腺癌的影响:信号通路综合分析
- 批准号:
19791115 - 财政年份:2007
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Studentship
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Continuing Grant
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enlarging the string theory landscape
扩大弦理论的前景
- 批准号:
23KF0214 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Standard Grant
Topics in String Theory and Quantum Field Theory
弦论和量子场论主题
- 批准号:
2310635 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Standard Grant
Physical Mathematics: String Theory, Quantization and Geometry
物理数学:弦理论、量化和几何
- 批准号:
SAPIN-2018-00029 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
Subatomic Physics Envelope - Individual
Development and Applications of String Theory
弦理论的发展与应用
- 批准号:
SAPIN-2017-00024 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
Subatomic Physics Envelope - Individual