NORMALITY AND COVERING PROFERITIES OF TOPOLOGICAL PROCUCT SPACES
拓扑产品空间的正规性和覆盖特性
基本信息
- 批准号:10640095
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study is mainly classified by the following six parts :[1] Characterizations of covering properties in terms of products :We prove some characterizations of metacompactness and submetacompactness in terms of products, and give a complete solution of a problem raised in 1992.[2] Covering properties of products of ordinals :We prove that most covering properties are equivalent in the products of ordinals, and that only subparacompactness is unexpectedly an exception there.[3] Normality of products with a generalized metric factor :Making use of regular nets, we introduced a new concept of generalized metric spaces, and prove the equivalence of normality and countable paracompactness in products with such a generalized metric factor.[4] Metrization theorems in terms of regular k-networks :We prove a natural metrization theorem in terms of regular k-networks. This gives a solution of a problem raised by Nagata.[5] Problems for k-networks and function spaces :M.Sakai has respectively answered two problems for k-networks raised by Lin and Tanaka, and he has also solved a problem for function spaces raised by Bella.[6] Shadowing properties on compact metric spaces :K.Sakai have given a partial answer to the problem of whether shadowing property and Lipschitz shadowing property are equivalent on compact metric spaces.
本研究主要分为以下六个部分:[1]乘积覆盖特性的表征:我们证明了乘积方面的超紧性和亚紧致性的一些表征,并对1992年提出的一个问题给出了完整的解决方案。[2]序数乘积的覆盖性质:我们证明大多数覆盖性质在序数乘积中是等价的,并且只有次仿紧性是意外的例外。[3]具有广义度量因子的乘积的正态性:利用正则网络,引入了广义度量空间的新概念,并证明了具有广义度量因子的乘积的正态性和可数拟紧性的等价性。 [4]正则 k 网络方面的度量化定理:我们证明了正则 k 网络方面的自然度量化定理。这给出了 Nagata 提出的问题的解决方案。[5] k网络和函数空间问题:M.Sakai分别回答了Lin和Tanaka提出的两个k网络问题,并且还解决了Bella提出的一个函数空间问题。[6]紧度量空间上的阴影性质:K.Sakai对于紧度量空间上的阴影性质和Lipschitz阴影性质是否等价的问题给出了部分答案。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
矢島幸信: "Special refinements and their applications on products"Topology and its Applications.
Yukinobu Yajima:“特殊改进及其在产品上的应用”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Sakai: "The OE-property of diffeomorphisms"Discrete and Continuous Dynamical Systems. 4. 581-591 (1998)
Kazuhiro Sakai:“微分同胚的 OE 性质”离散和连续动力系统。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
矢島幸信: "Special refinements and their applications on products"Topology and its Applications..
Yukinobu Yajima:“特殊改进及其在产品上的应用”拓扑及其应用..
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
酒井政美、玉野研一、矢島幸信: "Regular networks for metrizable spaces and Lavnev spaces" Bulletin of the Polish Academy of Sciences. 46. 121-133 (1998)
Masami Sakai、Kenichi Tamano、Yukinobu Yajima:“可度量空间和拉夫涅夫空间的正则网络”波兰科学院通报 46. 121-133 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
矢島幸信: "Analogous results to two classical characterizations of covering properties by products"Topology and its Applications. 84. 3-7 (1998)
Yukinobu Yajima:“乘积覆盖属性的两个经典表征的类似结果”拓扑及其应用 84. 3-7 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAJIMA Yukinobu其他文献
YAJIMA Yukinobu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAJIMA Yukinobu', 18)}}的其他基金
The set-theoretic study for the products with a monotonical normal factor in terms of stationary sets
平稳集单调正态因子乘积的集合论研究
- 批准号:
24540147 - 财政年份:2012
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study for covering properties of topological spaces and their products in terms of elementary submodels
用初等子模型覆盖拓扑空间及其乘积性质的研究
- 批准号:
21540149 - 财政年份:2009
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The considerations of M_3 problems from a new point of view
新视角对M_3问题的思考
- 批准号:
15540098 - 财政年份:2003
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Higher homotopy normality and fiberwise homotopy
更高同伦正态性和纤维同伦
- 批准号:
22K03317 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a diagnostic imaging system with abnormality detection by learning "normality" and a " instructive" structure.
通过学习“正常”和“指导”结构开发具有异常检测功能的诊断成像系统。
- 批准号:
22K07674 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of the Normality Bias of Vulnerable People by Social Capital and its application to Evacuation Behavior
社会资本对弱势群体常态偏差的阐释及其在疏散行为中的应用
- 批准号:
20K02068 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local asymptotic mixed normality for discretely observed diffusion processes
离散观察扩散过程的局部渐近混合正态性
- 批准号:
19K14604 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Normality test for high dimensional data
高维数据的正态性检验
- 批准号:
18K11206 - 财政年份:2018
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraicity and normality for p-adic numbers
p 进数的代数性和正态性
- 批准号:
526418-2018 - 财政年份:2018
- 资助金额:
$ 0.7万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




