Study on the finite element scheme for fluid flows with free interface

自由界面流体流动有限元格式研究

基本信息

  • 批准号:
    10640111
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

This study has been carried out during 1998-1999 in order to develop and analyze the finite element scheme for fluid flows with free interface, which are often found in nature and manay industrial processes.In 1998, we have considered a finite element scheme for two-fluid flows with low ratio of densities. We assume that two fluids are both viscous, incompressible and immiscible. As the mathematical model for this problem we use the one-fluid model assuming thr Boussinesq approximation to the Navier-Stokes equations. The interface is considered as the 0-level Set of the pseudo-density function which is the Solution of the transport equation. We have proposed a mixed finite element scheme with P1 iso P2/P1 element for these equations. Especially, we have also proposed the re-initialization technique in the finite element scheme for the transport equation by using a double well potential.In 1999 we have considered the finite element method for two-fluid flows with free interface including surface tension effect. Here we use the true two-fluid flow system in order to deal the problems with the high ratios of density and viscosity. In general, the surface tension effect is represented by the line integral on the interface. In our study the surface tension effect is interpreted as a body force spread across the interfacial region with a finite thickness.On the other hand, as the mathematical analysis of the finite element scheme for two-fluid flows we have considered the convergence of the approximate interface. In fact, estimating the LィイD1pィエD1(Ω)-norm of difference between the measure of positive value of the pseudo-density function and its approximation under the convergence of the finite element solution, we have prove it. Here we have used the Heaviside operator. The mathematical analysis of the total finite element scheme, however, is our theme in the near future.
本研究是在1998-1999年期间进行的,目的是发展和分析自然界和许多工业过程中经常遇到的具有自由界面的流体流动的有限元格式,1998年,我们考虑了低密度比双流体流动的有限元格式。我们假设两种流体都是粘性的、不可压缩的、不互溶的。作为这个问题的数学模型,我们使用的单流体模型假设的Boussinesq近似的Navier-Stokes方程。界面被认为是赝密度函数的0-水平集,赝密度函数是输运方程的解。本文对这类方程提出了一个P_1 ~ isoP_2/P_1元的混合有限元格式。特别地,我们还提出了双势阱输运方程有限元格式中的重新初始化技术。1999年我们考虑了考虑表面张力效应的自由界面双流体流动的有限元方法。在这里,我们使用真正的双流体流动系统,以处理与密度和粘度的高比例的问题。通常,表面张力效应由界面上的线积分表示。在我们的研究中,表面张力效应被解释为一个体积力分布在有限厚度的界面区域上,另一方面,作为二流体流动有限元格式的数学分析,我们考虑了近似界面的收敛性。实际上,在有限元解收敛的条件下,我们已经证明了伪密度函数的正测度与其近似值之差的L D1 p D1(Ω)-范数的估计,这里我们使用了Heaviside算子。然而,总的有限元方案的数学分析,是我们在不久的将来的主题。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Ohmori: "Numerical solution for two-fluid flows using finite element method"Appl. Math. Comput.. Vol.92. 125-133 (1998)
K. Ohmori:“使用有限元法对二流体流动进行数值解”Appl。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Ohmori: "Numerical solution for two-fluid flows using finite element method"Applied Mathematics and Computation. Vol. 92. 125-133 (1998)
K. Ohmori:“使用有限元法对二流体流动进行数值求解”应用数学与计算。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Ikeda and T. Ikeda: "Bifurcation phenomena from standing pulse solutions in some reaction-diffusion systems"J. Dynamics and Differential Equations. Vol. 12 (to appear). 117-167 (2000)
H. Ikeda 和 T. Ikeda:“某些反应扩散系统中驻波脉冲解的分岔现象”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ikeda: "Existence and stability of pulse waves bifurcated from front and back waves in bistable reaction-diffusion systems" Japan J.Indust.Appl.Math. vol.15. 163-231 (1998)
H.Ikeda:“双稳态反应扩散系统中从前波和后波分叉的脉冲波的存在性和稳定性”日本 J.Indust.Appl.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Sakuragi,K.Ohmori: "Cating simulations using the CIP-Galerkin method"Computational Fluid Dynamics Journal. Vol.8. 34-42 (1999)
T.Sakuragi、K.Ohmori:“使用 CIP-Galerkin 方法进行模拟”计算流体动力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHMORI Katsushi其他文献

OHMORI Katsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHMORI Katsushi', 18)}}的其他基金

High accuracy finite element method for flow problem with moving boundary and relative topics
动边界流动问题的高精度有限元方法及相关主题
  • 批准号:
    21540122
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the numerical analysis and its applications to engineering processes for free surface or interface flows
自由表面或界面流数值分析及其在工程过程中的应用研究
  • 批准号:
    15540113
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the finite element method for fluid flows with moving boundary
动边界流体流动有限元方法研究
  • 批准号:
    12640110
  • 财政年份:
    2000
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of high-fidelity numerical model for compressible free-interface multiphase flows based on BVD principle
基于BVD原理的可压缩自由界面多相流高保真数值模型的开发
  • 批准号:
    18H01366
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A hands free interface that can access both real world and PC world
可以访问现实世界和电脑世界的免提界面
  • 批准号:
    26350666
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了